簡易檢索 / 詳目顯示

研究生: 周幸男
Hsing-Nan Chou
論文名稱: 光譜電化學同步量測系統研製
Development of Synchronous Photoelectrochemical Measurement System
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 郭鴻飛
Hung-Fei Kuo
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 光譜電化學紫外可見光光譜儀恆電位儀吸收光譜電化學測量
外文關鍵詞: Spectroelectrochemistry, UV-visible spectrophotometer, Potentiostat, Absorption spectra, Electrochemical measurements
相關次數: 點閱:141下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究通過將紫外可見光光譜儀與恆電位儀相結合,實現了光譜電化學同步量測的方法,並應用在赤血鹽(K3[Fe(CN)6]的化合物量測。通過對該化合物在不同電位下的光譜進行連續監測,可以研究其電化學行為以及與光譜特性之間的關聯。同時,藉由恆電位儀的施加電位使得可以控制反應的進行,可以進一步了解光譜和電化學之間的動態過程。
在實驗過程中,本研究採用了紫外可見光光譜儀對化合物的吸收光譜進行記錄,並結合恆電位儀在特定電位下進行電化學測量。通過通訊協定將這兩種技術結合,並克服硬體上的困難後,開發一套同步軟體使得可以兩種不同的訊號可以同步進行,此結果可以能夠獲得在不同電位下的吸收光譜,並即時觀察光譜變化隨電位變化的動態過程。通過分析光譜和電化學資料的相關性,可以了解化合物在電子轉移過程中的一些重要資訊。
本研究的結果為理解特定化合物的光譜特性與電化學行為之間的關係提供了有力的實驗工具。通過光譜電化學同步量測,能夠深入探索化合物在電化學反應中的動態變化過程,從而為其在能源材料開發、催化反應等領域的應用提供了重要的工具。


This study implemented a spectroelectrochemical synchronous measurement method by combining a UV-visible spectrophotometer with a potentiostat, and applied it to the compound measurement of potassium ferricyanide (K3[Fe(CN)6]). By continuously monitoring the spectra of this compound at different potentials, its electrochemical behavior and its correlation with spectral characteristics were investigated. Additionally, by applying a controlled potential using the potentiostat, the progress of the reaction can be manipulated, the dynamic process between spectroscopy and electrochemistry can be further understood.
During the experimental process, this study recorded the absorption spectra of the compound using a UV-visible spectrophotometer and combined it with a potentiostat for electrochemical measurements at specific potentials. Utilization of communication protocols, the two techniques were integrated and hardware difficulties were overcome. A synchronized software was developed, enabling simultaneous acquisition of the two different signals. This allowed experimenters to obtain absorption spectra at different potentials and observe real-time dynamic changes in the spectra corresponding to variations in the applied potential. By analyzing the correlation between spectroscopic and electrochemical data, valuable information about the compound's behavior during electron transfer processes can be obtained..
The results of this study provide a powerful experimental tool for understanding the relationship between the spectral characteristics and electrochemical behavior of a specific compound. Through spectroelectrochemical synchronous measurements, it is possible to delve into the dynamic variations of the compound during electrochemical reactions, thus offering valuable insights for its applications in fields such as energy material development and catalytic reactions.

第一章 緒論...............1 1.1 前言...............1 1.2 研究動機與目的...............2 第二章 文獻回顧...............5 2.1 溶液的定義...............5 2.2 電化學氧化還原反應...............6 2.3 光譜儀在光譜電化學中的重要性...............7 2.4 紫外可見光分光光度計...............8 2.5 光譜儀的應用...............13 2.5.1 光譜儀在材料科學領域的應用...............13 2.5.2 材料的色彩和顏料研究...............14 2.6 氧化還原在光譜電化學中的重要性...............14 2.6.1氧化還原在光譜電化學扮演的角色...............15 第三章 實驗材料與方法...............16 3.1 研究溶液調配與步驟...............16 3.2 實驗耗材...............17 3.3 實驗儀器與參數...............17 3.3.1電化學設備...............17 3.3.2 紫外可見光分光光度計...............20 3.4 傳統式的量測方式...............25 3.5 光譜電化學同步設計架構...............26 3.6 USB同步模式的優點...............28 第四章 結果與討論...............31 4.1 光譜電化學實驗...............31 4.2 實驗步驟...............31 4.3 實驗操作步驟...............33 4.4 實驗結果...............39 第五章 結論...............47 第六章 未來展望...............48 參考文獻...............50

[1] Gaku Oriji, Yasushi Katayama, Takashi Miura, Investigations on V (IV)/V (V) and V (II)/V (III) redox reactions by various electrochemical methods, Journal of Power Sources, vol. 139, no. 1-2, pp. 321-324, 2005.
[2] Fritz Scholz Birgit Meyer, Electrochemical solid state analysis: state of the art, Chemical Society Reviews, vol. 23, no. 5, pp. 341-347, 1994.
[3] John D Bernal Ralph H Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, The Journal of Chemical Physics, vol. 1, no. 8, pp. 515-548, 1933.
[4] Tadashi Uragami, Kenji Okazaki, Hiroshi Matsugi, Takashi Miyata, Structure and permeation characteristics of an aqueous ethanol solution of organic− inorganic hybrid membranes composed of poly (vinyl alcohol) and tetraethoxysilane, Macromolecules, vol. 35, no. 24, pp. 9156-9163, 2002.
[5] Morteza Eslamian, Inorganic and organic solution-processed thin film devices, Nano-Micro Letters, vol. 9, no. 1, p. 3, 2017.
[6] Varun Raj Vemula, Venkateshwarlu Lagishetty, Srikanth Lingala, Solubility enhancement techniques, International journal of pharmaceutical sciences review and research, vol. 5, no. 1, pp. 41-51, 2010.
[7] WB Hardy, Colloidal solution. The globulins, The Journal of Physiology, vol. 33, no. 4-5, p. 251, 1905.
[8] Tugba Ceren Gokoglan, Shyam K Pahari, Andrew Hamel, Rachael Howland, Patrick J Cappillino, Ertan Agar, Operando spectroelectrochemical characterization of a highly stable bioinspired redox flow battery active material, Journal of The Electrochemical Society, vol. 166, no. 10, p. A1745, 2019.
[9] Babak Nemati Bideh, Hashem Shahroosvand, Mohammad Khaja Nazeeruddin, High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium (II)–Silver (I) Complex, Inorganic Chemistry, vol. 60, no. 16, pp. 11915-11922, 2021.
[10] TG Schaaff, MN Shafigullin, JT Khoury, I Vezmar, RL Whetten, WG Cullen, PN First, C Gutierrez-Wing, J Ascensio, MJ Jose-Yacaman, Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra, The Journal of Physical Chemistry B, vol. 101, no. 40, pp. 7885-7891, 1997.
[11] Zinovi Brusilovski, Adjustment and readjustment of electrochemical machines and control of the process parameters in machining shaped surfaces, Journal of Materials Processing Technology, vol. 196, no. 1-3, pp. 311-320, 2008.
[12] Jingrong Wang, Jinhao Meng, Qiao Peng, Tianqi Liu, Xueyang Zeng, Gang Chen, Yan Li, Lithium-ion battery state-of-charge estimation using electrochemical model with sensitive parameters adjustment, Batteries, vol. 9, no. 3, p. 180, 2023.
[13] Marie-Christine Fournier-Salaün Philippe Salaün, Quantitative determination of hexavalent chromium in aqueous solutions by UV-Vis spectrophotometer, Central European Journal of Chemistry, vol. 5, pp. 1084-1093, 2007.
[14] Zhining Shi, Christopher WK Chow, Rolando Fabris, Jixue Liu, Bo Jin, Applications of online UV-Vis spectrophotometer for drinking water quality monitoring and process control: a review, Sensors, vol. 22, no. 8, p. 2987, 2022.
[15] 紫外-可見光譜原理、儀器、應用、優勢和局限性. Available: https://microbiologynote.com/zh-TW/uv-vis-spectroscopy/
[16] Alexandru-Bogdan Tatomir, Saturation determination for multiphase systems in porous medium using light transmission method, Citeseer, 2007.
[17] 關於 Spectrophotometer (分光光度計). Available: https://www.normanda.com/portal_a1.php?owner_num=a1_66690&button_num=a1
[18] Marian Gilewski, Micro-Electro-Mechanical Systems in Light Stabilization, Sensors, vol. 23, no. 6, p. 2916, 2023.
[19] Jessica Roberts, Aoife Power, James Chapman, Shaneel Chandra, Daniel Cozzolino, The use of UV-Vis spectroscopy in bioprocess and fermentation monitoring, Fermentation, vol. 4, no. 1, p. 18, 2018.
[20] Jun-Seok Oh, Endre J Szili, Kotaro Ogawa, Robert D Short, Masafumi Ito, Hiroshi Furuta, Akimitsu Hatta, UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance, Japanese Journal of Applied Physics, vol. 57, no. 1, p. 0102B9, 2017.
[21] Restiani Alia Pratiwi Asep Bayu Dani Nandiyanto, How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds, Indonesian Journal of Educational Research and Technology, vol. 2, no. 1, pp. 1-20, 2022.
[22] Chul Woo Park, Ki Young Yoon, Jeong Hoon Byeon, Kyoungsik Kim, Jungho Hwang, Development of rapid assessment method to determine bacterial viability based on ultraviolet and visible (UV-Vis) spectroscopy analysis including application to bioaerosols, Aerosol and Air Quality Research, vol. 12, no. 3, pp. 399-408, 2012.
[23] Govinda Verma Manish Mishra, Development and optimization of UV-Vis spectroscopy-a review, World J. Pharm. Res, vol. 7, no. 11, pp. 1170-1180, 2018.
[24] Elżbieta Świętek, Kacper Pilarczyk, Justyna Derdzińska, Konrad Szaciłowski, Wojciech Macyk, Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy, Physical Chemistry Chemical Physics, vol. 15, no. 34, pp. 14256-14261, 2013.
[25] Zhebo Chen T Jaramillo, The use of UV-visible spectroscopy to measure the band gap of a semiconductor, Department of Chemical Engineering, Stanford University Edited by Bruce Brunschwig, vol. 9, p. 19, 2017.
[26] Priti B Tayade Ravindra V Adivarekar, Extraction of Indigo dye from Couroupita guianensis and its application on cotton fabric, Fashion and Textiles, vol. 1, pp. 1-16, 2014.
[27] J Suwanboriboon, W Meesiri, W Wongkokua, An application of spectrophotometer for ADMI color measurement, in Journal of Physics: Conference Series, 2018, vol. 1144, p. 012064: IOP Publishing.
[28] ACA De Vooys, GL Beltramo, B Van Riet, JAR Van Veen, MTM Koper, Mechanisms of electrochemical reduction and oxidation of nitric oxide, Electrochimica Acta, vol. 49, no. 8, pp. 1307-1314, 2004.
[29] Autolab Application Note EC08, Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)–Electrochemical cell setup, Metrohm Autolab. BV, pp. 1-3, 2011.
[30] Jonathan Schneider, Eduard Bulczak, Gumaa A El-Nagar, Marcus Gebhard, Paul Kubella, Maike Schnucklake, Abdulmonem Fetyan, Igor Derr, Christina Roth, Degradation phenomena of bismuth-modified felt electrodes in VRFB studied by electrochemical impedance spectroscopy, Batteries, vol. 5, no. 1, p. 16, 2019.
[31] SP-150 Potentiostat. Available: https://www.biologic.net/products/sp-150/
[32] 恆電位儀 / 交流阻抗. Available: https://gieoptics.com/chemistry_01.php
[33] 淺談紫外光可見光光譜原理/uv vis原理. Available: https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-60.html
[34] HP3000 Plus 高速版光譜儀. Available: https://gieoptics.com/spectrometer_03.php
[35] HRS4000 高解析度光譜儀. Available: https://gieoptics.com/spectrometer_04.php
[36] VenusPro-UV, UV高感度光譜儀. Available: https://gieoptics.com/spectrometer_05.php
[37] Explorer NIR, 128pixel InGaAs近紅外光譜儀. Available: https://gieoptics.com/spectrometer_07.php
[38] Explorer NIR-TEC(256pixel, 900-2500nm)製冷型近紅外光譜儀. Available: https://gieoptics.com/spectrometer_08_02.php
[39] 光譜電化學同步測量實驗指南. Available: http://als-japan.com.cn/1852.html
[40] SEC2020光譜儀測量系統. Available: http://als-japan.com.cn/1806.html#defaultTab15

QR CODE