簡易檢索 / 詳目顯示

研究生: 程柏達
Bo-da Cheng
論文名稱: 含有奈米銀之PVDF/PAN電紡膜接枝明膠之探討
A Study on Immobilization of Gelatin onto PVDF/PAN Electrospun Membrane Containing Silver Nanoparticles
指導教授: 蘇清淵
Ching-iuan Su
口試委員: 王英靖
Ying-jing Wang
楊銘乾
Ming-chien Yang
鄭國彬
Kuo-bin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 靜電紡絲聚偏二氟乙烯明膠生物相容性抗菌
外文關鍵詞: Electrospinning, Polyvinylidene fluoride(PVDF), Gelatin, Silver, Biocompatibility, antimicrobial
相關次數: 點閱:291下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗主要藉由混合二種不同材料來克服靜電紡絲膜後加工困難的缺點,第一部份由於純PAN在經由NaOH處理後,電紡膜3D結構會大量消失,所以混摻PVDF進行電紡,接著使用SEM探討PVDF/PAN在濃度2.5wt%、5wt%、7.5wt%、10wt%;電壓10kV、15kV、20kV;工作距離6cm、11m、16cm何者為最佳化參數條件後,再探討不同含量AgNO3對纖維直徑的變化,第二部份PVDF/PAN/Ag電紡膜擔任基材的角色,在基材上利用NaOH及HCl進行羧酸基改質後,加入 EDC當官能基活化劑,使Gelatin與PAN-COOH經由醯胺化反應形成PAN-Gelatin,第三部份將已接枝上Gelatin的PVDF/PAN/Ag電紡膜進行表面接枝量、生物相容性及血液相容性的測定。
實驗結果顯示PVDF/PAN/Ag電紡膜在濃度5wt%、電壓20kV、工作距離11cm、針頭GT23和相對比例為1:4時,纖維直徑有最佳的表現81±_8^17nm,FTIR測定出電紡膜有N-H基的存在,APTT及PT顯示電紡膜接枝明膠血液相容性良好,無助凝血及抗凝血的表現,血小板吸附量有上升的趨勢,L929纖維母細胞生長良好,抗菌性方面,奈米銀在長時間實驗中對明膠有了保護的作用。


The paper is researching into how to overcome the defect of electrospinning membrane was difficult to post-production processed. Section 1 investigated the morphology and optimal parameters of PAN/PVDF electrospinning membrane. The processing parameters including voltage, concentration, ratio of materials, distance between needle and collector. The membrane were prepared by electrospinning PAN/PVDF solutions containing different amounts of AgNO3 in DMF solution when we found the optimal parameters out. The average diameter of the pure PAN/PVDF nanofibers was 154±_█(21)^31 and decreased with increasing of AgNO3 was 81±_8^17nm. Section 2 the PAN/PVDF/Ag electrospinning membrane was hydrolyzed and grafted with gelatin via esterification with EDC. Section 3 the resulting gelatin-immobilizing membranes were characterized with Fourier transform infrared spectrometer(FTIR). Investigated the hemocompatibility and biocompatibility of PAN membrane surface-immobilized with gelatin. Result revealed that Gelatin-immobilizing has stable hemocompatibility and improve biocompatibility and platelet aggregation. In long time test, the effects of silver on the antimicrobial were shown.

目錄 中文摘要 ii 英文摘要 iii 誌謝 iv 目錄 v 圖目錄                        viii 表目錄 xi 第一章 緒論 1 1-1前言 1 1-2研究背景與目的 3 第二章 文獻回顧與理論基礎 5 2-1靜電紡絲 5 2-1-1靜電紡絲原理 5 2-1-2靜電紡絲裝置 6 2-1-3靜電紡絲主要參數 7 2-1-4高揮發性溶液製程阻塞與解決 8 2-2材料簡介 9 2-2-1聚偏二氟乙烯(PVDF) 9 2-2-2聚丙烯(PAN) 9 2-2-3明膠(Gelatin) 9 2-2-4 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide(EDC) 10 2-3高分子材料細菌黏著性 11 2-4殺菌機制 12 2-5奈米銀還原 13 2-6血小板與凝血作用 14 2-6-1血小板構造 14 2-6-2血小板止血機制 14 2-7血液的凝固機制(Blood coagulation) 16 2-8高分子生醫材料 19 2-9表面改質 20 第三章 實驗材料與方法 23 3-1實驗儀器 23 3-2實驗藥品 24 3-3實驗流程 25 3-4奈米銀製備 26 3-4-1 AgNO3還原成奈米銀 26 3-4-2奈米銀粒徑評估 26 3-5薄膜製備 27 3-5-1 PVDF/PAN薄膜製備 27 3-5-2產量評估 28 3-5-3 PVDF/PAN添加奈米銀薄膜製備 28 3-6表面改質 28 3-7掃描式電子顯微鏡及能量散譜分析(SEM&EDS) 30 3-8表面接枝密度 31 3-8-1羧酸基(carboxylic acid)接枝量的染色檢驗 31 3-8-2胺基(amino)接枝量的染色檢驗 31 3-9接觸角測試 32 3-10血液相容性 32 3-10-1活化部份凝血活時間(APTT) 32 3-10-2血小板附著試驗 33 3-11生物相容性 34 3-11-1細胞培養 34 3-11-2細胞增生性 35 3-12抗菌性測定 37 第四章 結果與討論 38 4-1奈米銀粒徑評估 38 4-2 PVDF/PAN薄膜最佳工作條件 39 4-3 PVDF/PAN不同比例對產量之影響 46 4-4添加奈米銀之PVDF/PAN電紡膜探討 47 4-5奈米銀於P/P28電紡膜中分佈情形 48 4-6 P/P28改質後微觀現象 49 4-7 FTIR測定官能基 50 4-8表面接枝量密度 51 4-9接觸角測試 54 4-10血液相容性 55 4-10-1血小板吸附量 55 4-10-2部份活化凝血時間及凝血原時間(APTT&PT) 56 4-11抗菌性評估 58 4-11-1無添加奈米銀之樣品 58 4-11-2添加奈米銀之樣品 60 4-12生物相容性 61 第五章 結論 62 參考文獻 63

1. Kageyama K., J.T., Tamszawa and Aida T., Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica, Science 1999, 285(5436), pp.2113-2115.
2. A. Formhals, US Patent, 1934,1-975-504.
3. Horch R.E., Kopp J., Kneser U., Beier J., Bach A.D., Tissue engineering of cultured skin substitutes, J. of Cellular and Molecular Medicine, 2005, 9(3), pp.592-608.
4. Venugopal J.R., Zhang Y.Z., Ramakrishna S., In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane, Artificial Organs 2006, 30(6), pp.440-446.
5. Fletcher M., Pringle J.H., The effect of surfaces free energy and medium tension on bacterial attachment to solid surface, J. Colloid Inter Sci. 1981, 104(1), pp. 5-14.
6. Gumusderelioglu K.M., Pesmen A., Microbial adhesion to ionogenic PHEMA, PU PP implants, Biomaterials 1996, 17(4), pp.443-449.
7. Verheyen C.C.P.M., Dhert W.J.J., Hogervorst M.A. de B., Reijden T.J.K., Petit P.L.C., Groot K., Adherence to a metal polymer and composite by staphylococcus aureus and staphylococcus epidermidis, Biomaterials 1993, 14(5), pp.383-391.
8. Mcdonnell G., Russell A.D., Antiseptics and disinfectants: Activity, action, and resistance, Clinical Microbi. Reviews 1999, 12(1), pp.147-179.
9. Veenstra D.L., Saint S., Saha S., Lumley T., Sullivan S.D., Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: A meta-analysis, J. of the American Medical Association 1999, 281(3), pp.261-267.
10. Fong H., Effects of water contents and postcuring conditions on Bis-GMA/TEGDMA dental restorative composite resins, J. of Applied Polymer Sci. 2004, 94(2), pp.492-502.
11. Deitzel J.M., Kosik W., McKnight S.H., Ten N.C.B., Desimone J.M., Crette S., Electrospinning of polymer nanofibers with specific surface chemistry, Polymer 2001, 43(3), pp.1025-1029.
12. Reneker D.H., Chun I., Nanometer diameter fibers of polymer, produced by electrospinning, Nanotech. 1996, 7(3), pp.216-223.
13. Huang Z.M., Zhang Y.Z., Kotaki M., Ramakrishna S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Sci. and Tech. 2003, 63(15), pp.2223-2253.
14. Reznilk S.N., Yarin A.L., Theron A., Zussman E., Transient and steady shapes of droplets attached to a surface in a strong electricfield, J. of Fluid Mech. 2004, 516, pp.349-377.
15. Fridrikh S.V., Yu J.H., Brenner M.P., Rutledge G.C., Controlling the fiber diameter during electrospinning. Physical Review Letters 2003, 90(14), pp. 144502/1-144502/4.
16. Teo W.E., Gopal R., Ramaseshan R., Fujihara K., Ramakrishna S., A dynamic liquid support system for continuous electrospun yarn fabrication, Polymer 2007, 48(12), pp.3400-3405.
17. Zong X., Kim K., Fang D., Ran S., Hsiao B.S., Chu B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 2002, 43(16), pp.4403-4412.
18. Fong H., Chun I., Reneker D.H., Beaded nanofibers formed during electrospinning, Polymer 1999, 40(16), pp.4585-4592.
19. Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C., The effect of processing variables on the morphology of electrospinning nanofibers and textiles, Polymer 2001, 42(1), pp.261-272.
20. Koski A., Yim K., Shivkumar S., Effect of molecular weight on fibrous PVA produced by electrospinning, Mat. Letters 2004, 58(3-4), pp.493-497.
21. Chronakis I.S., Grapenson S., Jakob A., Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties, Polymer 2006, 47(5), pp.1597-1603.
22. Musale D.A., Kumar A., Pleizier G., Formation and characterization of poly(acrylonitrile)/chitosan composite ultrafiltration membranes, J. Membranes Sci. 1999, 154(2), pp.163-173.
23. Ki C.S., Baek D.H., Gang K.D., Lee K.H., Um I.C., Park Y.H., Characterization of gelatin nanofiber prepared from gelatin-formic acid solution, Polymer 2005, 46(14), pp.5094-5102.
24. Huang Z.M., Zhang Y., Ramakrishna S., Lim C.T., Electrospinning and mechanical characterization of gelatin nanofibers, Polymer 2004, 45(15), pp.5361-5368.
25. Li J., He A., Han C.C., Fang D., Hsiao B.S., Chu B., Electrospinning of Hyaluronic Acid(HA) and HA/Gelatin Blends. Marcomol. Rapid Commun. 2006, 27(2), pp.114-120.
26. Grabrek Z., Gergely J., Zero-Length crosslinking procedure with the Use of Active Esters, Analytical Biochem. 1990, 185(1), pp.131-135.
27. Kwon O.S., Modification of Carboxyl Residues of Proteins with Pyridoxamine as a Fluorophore, J. of Biochem. and Mol. Biol. 1996, 29(3), pp.215-220.
28. Katsikigianni M., Missirlis Y.F., Harris L., Douglas J., Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacterial material interactions, Eur. Cell and Mater. 2004, 8, 37-57.
29. 德才、小林、其、李光,「抗菌与抗菌維的研究展」,合成維工 2005,第二十八卷,第四期,第40~42頁。
30. Pastoriza-Santos I., Liz-Marzan M., Formation and Stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, Langmuir 1999, 15(4), pp. 948-951.
31. 何敏夫,血液學-凝固作用,合記出版社 2001,頁數:509-528。
32. 劉技謀,人工真皮之製備與透明質酸添加效應之研究,國立成功大學生物科技研究所碩士學位論文 2001,頁數:18-19。
33. 李婷婷,聚苯胺修飾電極對肝素之偵測,國立中山大學化學研究所碩士論文 1999,頁數:19-20。
34. Fujimoto K., Minato M., Tadokoro H. and Ikada Y., Platelet deposition onto polymeric surfaces during shunting, J. of Biomedical Mater. Res. 1993, 27(3), pp.335-343.
35. Grasel T.G., Cooper S.L., Properties and biological interactions of polyurethane anionomers: Effect of sulfonate incorporation, J. Biomed Mater. Res. 1989, 23(3), pp.311-338.
36. Ito Y., Sisido M., Imanishi Y., Synthesis and antithrombogenicity of anionic polyurethanes and heparin-blood polyurethanes, J. Biomed Mater. Res. 1986, 20(8), pp.1157-1177.
37. Blezer R., Fouache B., Willems G.M., Lindhout T., Activation of blood coagulation at heparin-coated surfaces, J. of Biomedical Materials Res. 1997, 37(1), pp.108-113.
38. Johnson S.D., Anderson J.M., Marchant R.E., Biocompatibility studies on plasma polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces, J. Biomed. Mater. Res. 1992, 26(7), pp.915-935.
39. Han D.K., Lee N.Y., Park K.D., Kim Y.H., Cho H.I., Min B.G. Heparin-like anticoagulant activity of sulphonated poly(ethylene oxide) and sulphonated poly(ethylene oxide) grafted polyurethane, Biomaterials 1995, 16(6), pp. 467-471.
40. Baier R.E., Surface behavior of biomaterials: The theta surface for biocompatibility, J. of Materials Science: Materials in Medicine 2006, 17(11), pp. 1057-1062.
41. T.M., S.T., R.R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydrate Polymers 2008, 72(1), pp.43-51.
42. Marrie T.J., Costerton J.W., Scanning electron microscopic study of uropathogen adherence to a plastic surface, Appl. Environ Microbiology 1983, 45(3), pp.1018-1024.
43. Koneman E.W., Allen S.D., Janda W.M., Sohreckenberger P.C., Winn W.C., Color Atlas and Textbook of Diagnostic Microbiology, Lippincott CO. 1997, pp.1-63.
44. Harris L.G., Foster S.J., Richards R.G., Lambert P., Stickler D., Eley A., An introduction to S.aureus, and techniques for identifying and quantifying S.aureus adhesions in relation to biomaterials: review, Eur. Cell Mater 2002, 4, pp.39-60.

QR CODE