簡易檢索 / 詳目顯示

研究生: 林昶安
Chang-an Lin
論文名稱: 以整合被動元件製程實現雙頻帶耦合器與巴倫 濾波器微型晶片設計
On-Chip Miniaturized Dual-Band Coupler and Balun Filter Using Integrated Passive Device Technology
指導教授: 馬自莊
Tzyh-ghuang Ma
口試委員: 瞿大雄
Tah-hsiung Chu
張嘉展
Chia-chan Chang
曾昭雄
Chao-hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 雙頻操作微型化元件整合被動元件製程合成共平面波導雙頻鼠競耦合器極簡式巴倫器巴倫帶通濾波器
外文關鍵詞: dual-band, miniaturized, integrated passive device, synthesized coplanar waveguide, rat-race coupler, minimal balun, balun bandpass filter
相關次數: 點閱:420下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以矽基板被動元件製程,實現一款微型化雙頻鼠競耦合器及一款雙頻巴倫帶通濾波器晶片設計。該微型化雙頻鼠競耦合器使用合成共平面波導,搭配並聯接地之串聯共振器導納負載,同時實現雙頻操作與電路微型化之設計。本設計之電路面積為6.2 × 2.8 mm^2,與傳統單頻鼠競耦合器相比,具有面積縮小比例達97.2 % 之顯著微型化能力,於嚴格之規格條件限制下,仍可於兩頻帶分別具19.6 % 與5.3 % 之比例頻寬,模擬與量測響應亦十分吻合。
而雙頻巴倫帶通濾波器,以二階式柴比雪夫濾波器架構,並利用共振器於共振頻率前後之不同電抗特性,並搭配極簡式非耦合巴倫器之設計法則,同時達成具雙頻操作、濾波能力、巴倫特性與電路微型化之元件。與現今文獻之所有雙頻巴倫帶通濾波器相比,本設計方法不僅更為簡單,不需運用任何繁複之耦合技巧,且在具備同等水準之電氣響應同時,電路面積僅為1.5 × 1.25 mm^2,較他者縮小數百倍之多。本設計之兩頻帶比例頻寬分別為26 % 與18.5 %,模擬與量測結果大部分皆十分吻合,而兩者之相異處亦於內文詳細探討,並提出改善方法使電氣響應可有效提升,本設計經改良後可成為現代無線通訊系統應用中具優良競爭力之微波被動元件候選者之一。


In this thesis, an on-chip miniaturized dual-band rat-race coupler and an on-chip dual-band balun bandpass filter are developed with the silicon-based integrated passive device technology. The miniaturized dual-band rat-race coupler is realized with synthesized coplanar waveguides and lumped resonators to simultaneously achieve size miniaturization and dual-band operation. This design has a circuit footprint of 6.2 × 2.8 mm^2, along with a remarkable size reduction of 97.2 %. The fractional bandwidths are 19.6% and 5.3%, respectively.
The design of the dual-band balun bandpass filter begins with the second-order Chebyshev canonical filter model. Benefitting from the reactance behavior of an off-resonance resonator and the unique concept of a minimal balun design, the proposed balun filter simultaneously fulfill the goals of dual-band operating, good filtering property, acceptable common-mode rejection, and size miniaturization. When compared to the dual-band balun filters in the literature, the proposed method is straightforward without applying any coupling techniques. Nevertheless, it shows similar electrical response along with a very compact circuit footprint of 1.5 × 1.25 mm^2. It is one-hundredth the size of the second smallest one in the literature. The fractional bandwidths are 26% and 18.5%, respectively. Ways to improve the common-mode rejection ratio are discussed, as well.

摘要................................................................................................................................ I Abstract ........................................................................................................................ III 目錄............................................................................................................................ VII 圖目錄.......................................................................................................................... IX 表目錄.......................................................................................................................... XI 第一章 緒論............................................................................................................ 1 1.1 研究動機與目的........................................................................................ 1 1.2 文獻探討.................................................................................................... 2 1.3 研究貢獻.................................................................................................... 5 1.4 論文組織.................................................................................................... 6 第二章 以合成共平面波導實現微型化雙頻鼠競耦合器.................................... 7 2.1 前言............................................................................................................ 7 2.2 矽基板整合被動元件製程........................................................................ 8 2.3 電路架構與設計原理................................................................................ 9 2.3.1 雙頻鼠競耦合器設計原理............................................................ 9 2.3.2 以合成共平面波導取代傳統傳輸線.......................................... 12 2.3.3 電路佈局...................................................................................... 15 2.4 模擬與量測結果...................................................................................... 19 2.5 結語.......................................................................................................... 24 第三章 以極簡式巴倫器架構實現雙頻巴倫帶通濾波器.................................. 25 3.1 前言.......................................................................................................... 25 3.2 極簡式非耦合巴倫器設計概念.............................................................. 26 3.3 電路架構與設計原理.............................................................................. 28 VIII 3.3.1 二階柴比雪夫式雙頻帶通濾波器設計...................................... 28 3.3.2 雙頻巴倫帶通濾波器之實現...................................................... 34 3.3.3 電路佈局...................................................................................... 37 3.4 模擬與量測結果...................................................................................... 40 3.5 量測誤差之分析與討論.......................................................................... 46 3.6 結語.......................................................................................................... 49 第四章 結論.......................................................................................................... 50 4.1 總結.......................................................................................................... 50 4.2 未來發展.................................................................................................. 50 參考文獻...................................................................................................................... 51

[1] K. Liu and R. C. Frye, “Small form-factor integrated passive devices for SiP applications,” in 2007 IEEE MTT-S Int. Microw. Symp. Dig., pp. 2117–2120, Jun. 2007
[2] P. Limaye, X. Rottenberg, R. d'Ippolito, S. Donders, W. De Raedt, I. De Wolf, and E. Beyne, “Probabilistic design approach for integrated passive device in RF applications,” in Electro. Comp. Techn. Conf., 58th, pp. 1249–1255, May 2008.
[3] R. C. Fyre, K. Liu, and Y. Lin, “Three-stage bandpass filters implemented in silicon IPD technology using magnetic coupling between resonators,” in 2008 IEEE MTT-S Int. Microw. Dig., pp.783–786, Jun. 2008.
[4] H.-K. Chiou, H.-Y. Chung, Y.-C. Hsu, D.-C. Chang, and Y.-Z. Juang, “Broadband and high-efficiency power amplifier that integrates CMOS and IPD technology,” in IEEE Trans. Comp. Packag. and Manufac. Techn., vol.3, no. 9, pp. 1489–1497, Sep. 2013.
[5] Y. Li, C. Wang and N.-Y. Kim, “An optimized process of high-performance integrated passive devices (IPDs) on Si-GaAs Substrate for RF applications,” in 2013 Asia-Pacific Microw. Conf. Proc., pp. 116–118, Nov. 2013.
[6] C.-W. Wang, K.-H. Li, C.-J. Wu, and T.-G. Ma, “A miniaturized Wilkinson power divider with harmonic suppression characteristics using planar artificial transmission lines,” in 2007 Asia-Pacific Microw. Conf. Proc., pp. 1–4,Dec. 2007.
[7] H.-W. Hsu, C.-H. Lai, and T.-G. Ma, “A miniaturized dual-mode ring bandpass filter,” in IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 542–544, Oct. 2010.
[8] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler matrix,” in IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792–2801, Dec. 2007.
[9] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Novel uniplanar synthesized coplanar waveguide and the application to miniaturized rat-race coupler,” in 2010MTT-S
52
Int. Microw. Dig., pp. 708–711, May 2010.
[10] I.-H. Lin, M. De Vincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” in IEEE Trans. Microw. Theory Techn., vol. 52, no. 4, pp. 1142–1149, Apr. 2004.
[11] K.-K. M. Cheng and F.-L. Wong, “A novel rat race coupler design for dual-band applications,” in IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 521–523, Aug. 2005.
[12] C.-L. Hsu, C.-W. Chang, and J.-T. Kuo, “Design of dual-band microstrip rat race coupler with circuit miniaturization,” in 2007 MTT-S Int. Microw. Dig., pp.177–180, Jun. 2007.
[13] T.-M. Shen, C.-R. Chen, T.-Y. Huang, and R.-B. Wu, “Dual-band rat-race coupler design in multilayer LTCC,” in 2010 Asia-Pacific Microw. Conf. Proc., pp.798–801, Dec. 2010.
[14] M.Hoft and T.Shimamura, “Design of symmetric trisection filters for compact low-temperature co-fired ceramic realization,” in IEEE Trans. Microw. Theory Techn., vol. 58, no.1, pp. 165–175, Jan.2010.
[15] I. Wolf, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” in Electro. Lett., vol. 8, pp. 302–323, Jun. 1972.
[16] S. Luo and L. Zhu, “A novel dual-mode dual-band bandpass filter based on a single ring resonator,” in IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 497–499, Aug. 2009.
[17] J.-E. Lim, M.-H. Nam, H.-O. Choi, and J.-H. Lee, “Two-port balanced dual-band bandpass filter based on stepped impedance resonators,” in 2010 Asia-Pacific Microw. Conf. Proc., pp. 1114–1117, Dec. 2010.
[18] H. Joshi and W. Chappell, “Dual-band lumped-element bandpass filter,” in IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[19] W. Shen, W.-Y. Yin, and X.-W. Sun, “Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths,” in IEEE Microw. Wireless
53
Compon. Lett., vol. 21, no. 8, pp. 418–420, Aug. 2011.
[20] C.-K. Lin and S.-J. Chung, “A compact simple structured filtering antenna utilizing filter synthesis technique,” in 2010 Asia-Pacific Microw. Conf. Proc., pp. 1573–1576, Dec. 2010.
[21] C.-H. Wu and T.-G. Ma, “Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability,” in IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3880–3885, Jul.2013.
[22] H.-K. Chiou and T.-Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-μm CMOS technology,” in IEEE Trans. Microw. Theory Techn., vol. 56, no.4, pp. 835–848, Apr.2008.
[23] C.-H. Huang, T.-S. Horng, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, “Optimum design of transformer-type Marchand balun using scalable integrated passive device technology,” in IEEE Trans. Comp. Packag. and Manufac. Techn., vol. 2, no.8, pp. 1370–1377, Aug.2012.
[24] G.-S. Huang, C.-H. Wu, and C.-H. Chen, “LTCC balun bandpass filters using dual-response resonators” in IEEE Microw. Wireless Comp. Lett., vol. 21, no. 9, pp. 483–485, Sep. 2011.
[25] C.-L. Tsai and Y.-S. Lin, “Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology,” in IEEE Trans. Microw. Theory Techn., vol. 58, no.11, pp. 2878–2887, Nov.2010.
[26] K. Liu, R. Frye, and R. Emigh, “Band-pass-filter with balun function from IPD technology,” in Electro. Comp. and Techn. Conf.,58th, pp. 718–723, May 2008.
[27] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced output,” in IEEE Electron Device Lett., vol. 31, no. 11, pp.1205–1207, Nov. 2010.
[28] W. Jiang, L. Zhou, A.-M. Gao, W. Shen, W.-Y. Yin, and J,-F. Mao, “Compact dual-mode dual-band balun filter using double-sided parallel-strip line,” in Electro. Lett., vol. 48, no. 21, pp. 1351–1352, Oct. 2012.
54
[29] L.-K. Yeung and K.-L. Wu, “A dual-band coupled-line balun filter,” in IEEE Trans. Microw. Theory Techn., vol. 55, no.11, pp. 2406–2411, Nov.2007.
[30] G.-S. Huang and C.-H. Chen, “Dual-band balun bandpass filter with hybrid structure,” in IEEE Microw. Wireless Comp. Lett., vol. 21, no. 7, pp. 356–358, Jul. 2011.
[31] D. M. Pozar, Microwave engineering,3rd ed. Wiley, 2005.
[32] 吳宜隆, 極簡式巴倫器與二維合成傳輸線之晶片實現, 國立台灣科技大學電機工程研究所, 碩士論文, 民國103年.
[33] W. R. Eisenstadt, B. Stengel, B. M. Thompson, Microwave differential circuit design using mixed-mode S-parameters,3rd ed. Artech house, 2006.
[34] J.-S. Hong and M. J. Stengel, Microwave filters for RF/microwave applications, Wiley, 2001.

無法下載圖示 全文公開日期 2019/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE