簡易檢索 / 詳目顯示

研究生: 劉柏緯
Po-Wei Liu
論文名稱: 垂直型金紅石二氧化鈦奈米柱混合奈米粒子光陽極之探討
The Study of Aligned Rutile Titanium Dioxide Nanorods/Nanoparticles Hybrid Photoanode
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 二氧化鈦
外文關鍵詞: Titanium Dioxide
相關次數: 點閱:286下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究是利用水熱法於氟元素摻雜氧化錫透明導電玻璃上成長單晶且具垂直形態之金紅石相二氧化鈦奈米柱。同時藉由改變實驗條件進行奈米柱長度、直徑和密度的控制。此外,更發現用以水熱法進行成長時可在添加晶種層作用之下可於氟元素摻雜氧化錫透明導電玻璃成長垂直形態二氧化鈦奈米柱。由於單晶一維結構的材料受到量子侷限效應的影響能讓電子限制在一維方向進行移動,此應用於太陽能電池光陽極結構層上可使電子有較快的電子傳輸速率。此外,為了增加光陽極結構對染料的吸附表面積,在本研究中以四氯化鈦溶液的水解反應合成二氧化鈦奈米粒子充填於奈米柱之間的間隙,構成二氧化鈦奈米柱/奈米粒子混合型光陽極結構,以此所進行的染料敏化型太陽能電池效率可達3.6%,並利用變頻式光電壓/光電流圖譜研究此兩種不同型態之光陽極結構層的電子傳遞時間和電子再結合生命週期。


In this study, one-dimensioanl vertical aligned single crystalline rutile phase titanium dioxide (TiO2) nanorods were grown on transparent conductive fluorine-doped tin-oxide (FTO) glass substrate by hydrothermal method. The diameters, lengths and densities of the nanorods could be controlled by changing the experiment conditions. We also found that vertical aligned TiO2 nanorods could be grown on glass substrates by adding seed layer. Comparing with conventional TiO2 nanoparticles photoanode, one-dimensional vertical aligned single crystalline TiO2 nanorods have directly electrical pathways for photogenerated electrons and enhance the electron transport behavior. However, the dye loading amount decreases due to the effect of surface-to-volume ratio. In order to maintain the dye loading amount, we decorate TiO2 nanoparticles between the gaps of nanorods by using titanium tetrachloride (TiCl4) solution. The efficiency the nanorods/nanoparticles hybrid photoanode around 3~4 μm thickness approaches 3.6%. The photogenerated electron transit time and recombination lifetime are also studied by intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS).

中文摘要 I Abstract II 目錄 IV 表目錄 VI 圖目錄 VII 第一章  緒論 1-1 前言 1-2 研究動機與目的 第二章 理論基礎與文獻回顧 2-1 二氧化鈦的基本性質 2-2 成長垂直二氧化鈦奈米材料的方法 2-3 染料敏化型太陽能電池 2-3-1 基本原理 2-3-2 載子在光陽極中的傳遞特性研究 第三章 實驗方法與步驟 3-1 實驗流程圖 3-2 實驗藥品與設備儀器 3-3 實驗步驟 第四章 結果與討論 4-1 於透明導電基板上成長垂直型二氧化鈦奈米柱之最適化條件探討 4-1-1 晶種層效應 4-1-2 垂直型二氧化鈦奈米柱成長條件之探討 4-2 以垂直型態之二氧化鈦奈米柱光陽極進行染料敏化電池特性之探討 4-3 染料敏化垂直型二氧化鈦奈米柱混合奈米顆粒之光陽極 4-3-1 tBP對四氯化鈦水溶液修飾垂直型二氧化鈦奈米柱之光陽極影響 4-3-2 四氯化鈦溶液系統對二氧化鈦奈米柱/奈米粒子光陽極結構形成之影響中 4-3-3 退火溫度對四氯化鈦水溶液修飾垂直型二氧化鈦奈米柱光陽極之影響 4-3-4 電子在不同結構之光陽極傳輸性質比較 第五章 結論 第六章 參考文獻

1. B. O'Regan and M. Gratzel, Nature 353 (6346), 737-740 (1991).
2. C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano 3 (10), 3103-3109 (2009).
3. R. D. Schaller and V. I. Klimov, Physical Review Letters 92 (18), 186601 (2004).
4. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, Nano Letters 5 (5), 865-871 (2005).
5. R. D. Schaller, M. A. Petruska and V. I. Klimov, Applied Physics Letters 87 (25), 253102 (2005).
6. J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson and A. J. Nozik, Journal of the American Chemical Society 128 (10), 3241-3247 (2006).
7. D. Reyes-Coronado, Nanotechnology 19, 145605 (2008).
8. Z. Liu, V. Subramania and M. Misra, The Journal of Physical Chemistry C 113 (31), 14028-14033 (2009).
9. B. Liu and E. S. Aydil, Journal of the American Chemical Society 131 (11), 3985-3990 (2009).
10. X. Yang, J. Zhuang, X. Li, D. Chen, G. Ouyang, Z. Mao, Y. Han, Z. He, C. Liang, M. Wu and J. C. Yu, ACS Nano 3 (5), 1212-1218 (2009).
11. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, Nano Letters 8 (11), 3781-3786 (2008).
12. C.-H. Ku and J.-J. Wu, Nanotechnology 18 (50), 505706 (2007).
13. M.Gratzel, Nature 414 (15), 338 (2001).
14. B. O. R. M. Gratzel, (1991).
15. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat Mater 4 (6), 455-459 (2005).
16. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry 570 (2), 257-263 (2004).
17. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS Applied Materials & Interfaces 1 (6), 1145-1149 (2009).
18. S. H. Seo, S. Y. Kim, B.-K. Koo, S.-I. Cha and D. Y. Lee, Langmuir 26 (12), 10341-10346 (2010).
19. M. Gratzel, Inorganic Chemistry 44 (20), 6841-6851 (2005).
20. J. Bisquert, The Journal of Physical Chemistry C 114 (18), 8552-8558 (2010).
21. I. n. Mora-Seró, V. Likodimos, S. Giménez, E. Martínez-Ferrero, J. Albero, E. Palomares, A. G. Kontos, P. Falaras and J. Bisquert, The Journal of Physical Chemistry C (2010).
22. H. Wang and L. M. Peter, The Journal of Physical Chemistry C 113 (42), 18125-18133 (2009).
23. J. El Fallah, S. Boujana, H. Dexpert, A. Kiennemann, J. Majerus, O. Touret, F. Villain and F. Le Normand, The Journal of Physical Chemistry 98 (21), 5522-5533 (1994).
24. L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, The Journal of Physical Chemistry B 101 (49), 10281-10289 (1997).
25. L. M. Peter and K. G. U. Wijayantha, Electrochimica Acta 45 (28), 4543-4551 (2000).
26. G. Schlichthorl, S. Y. Huang, J. Sprague and A. J. Frank, The Journal of Physical Chemistry B 101 (41), 8141-8155 (1997).
27. D. K.-P. Wong, C.-H. Ku, Y.-R. Chen, G.-R. Chen and J.-J. Wu, ChemPhysChem 10 (15), 2698-2702 (2009).
28. I. G.-V. a. M. Lira-Cantu, Energy Environ. Sci., , 19 (2009).
29. E. S. Aydil, Phys. Chem. Chem. Phys., 9648 (2009).
30. A. Di Paola, M. Bellardita, R. Ceccato, L. Palmisano and F. Parrino, The Journal of Physical Chemistry C 113 (34), 15166-15174 (2009).
31. D. Vanmaekelbergh and P. E. d. Jongh, Phy. Rev. B 61 (7), 4699 (2000).
32. N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B 104 (38), 8989-8994 (2000).

QR CODE