簡易檢索 / 詳目顯示

研究生: 葉建緯
JIAN-WEI YE
論文名稱: 奈米鑽石薄膜氫離子感測器特性之研究
The investigation of hydrogen ion sensor based on nanocrystalline diamond film.
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
張守進
Shoou-Jinn Chang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 奈米鑽石薄膜快速熱退火四氟化碳電漿離子感測器
外文關鍵詞: nanocrystalline diamond, EGFET, RTA, CF4 plasma
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討奈米鑽石薄膜藉由不同後處理方式以及摻雜氮與未摻雜之特性分析,並使用EGFET架構應用於氫離子感測器,後續進行pH靈敏度量測以及探討靈敏度與奈米鑽石薄膜之間的關聯性。
實驗內容主要是利用微波電漿化學氣相沉積系統將奈米鑽石薄膜沉積於矽基材上;再藉由快速熱退火及四氟化碳電漿進行表面處理。材料分析則是利用場發射電子顯微鏡、拉曼光譜儀、X射線光電子能譜儀、傅利葉紅外線光譜儀、X光繞射分析儀、原子力顯微鏡、I-V量測,分別分析薄膜表面形態、薄膜表面元素成份、薄膜表面化學鍵結、晶格結構、薄膜表面粗糙度及pH靈敏度。
靈敏度量測是在暗房及定溫下進行,量測時外加電壓於參考電極0~6V(VREF)、MOSFET之汲極0.3V(VDS),並觀察 MOSFET之汲極電流(IDS)變化,本實驗結果顯示,隨著後處理時間增加,靈敏度有明顯的不同,未處理的鑽石薄膜靈敏度為63mV/pH,經快速熱退火處理60s、120s,四氟化碳電漿處理 5分鐘、10分鐘及15分鐘,靈敏度分別為35mV/pH、25mV/pH、49 mV/pH、38 mV/pH、24 mV/pH;另一方面,鑽石薄膜也會隨著摻雜不同濃度的氮而有所改變,未摻雜氮的奈米鑽石薄膜靈敏度為50mV/pH,摻雜(9%、18%、27%)氮的靈敏度分別為15 mV/pH、35 mV/pH、35 mV/pH,其影響靈敏度原因,可以從材料特性分析去得知未處理及未摻雜之特性都比後處理及摻雜氮之奈米鑽石薄膜較佳。


In this study, nanocrystalline diamond films (NCD) and nitrogen-doped NCD films with different post-treatment have been investigated using EGFET (Extended gate field effect transistor) structure. After the pH-sensitivity measurement, the characteristics and surface properties of NCD films are discussed.
At first, NCD films (328 nm) were grown on Si substrates by microwave plasma-enhanced chemical vapor deposition. After the NCD films were deposited, the NCD films were treated by RTA and CF4 plasma treatment. The surface morphology, surface chemistry properties and the pH-sensitivity of NCD films were examined by FE-SEM, Raman spectroscopy, XPS, FTIR, AFM, XRD and I-V measurement.
The pH-sensitivities of the NCD films were measured by Current-Voltage (I-V) curves of EGFET devices. The Ids-Vgs characteristics of the NCD EGFETs were measured using a source-measure unit (Keithley 237). In this experiment, the drain-source voltage (VDS) of the MOSFET was kept constant (0.3V) and the reference electrode voltage was swept from 0 to 6V. In order to avoid the influence of light and temperature, the NCD EGFETs were carried out at 25℃ from the dark box in the air. According to the result, there is a noticeable change on the pH-sensitivity values of NCD films after RTA and CF4 plasma treatment. The pH-sensitivity value of the untreated NCD films is 63 mV/pH. With RTA treatment (60s, 120s), the pH-sensitivity values of NCD films decreased to 35 and 25 mV/pH, respectively. With CF4 plasma treatment (5, 10, 15min), the pH-sensitivity values of NCD films are 49, 38 and 42 mV/pH. Compared with RTA and CF4 plasma treatment, the pH-sensitivity property of the untreated NCD film is better than the NCD films with post-treatment (RTA, CF4 plasma).
On the other hand, the pH-sensitivity values of NCD films after doping nitrogen were also changed. The pH-sensitivity value of undoped NCD film is 50mV/pH. Compared to the undoped NCD films, the pH-sensitivity values of nitrogen-doped NCD films (9%, 18%, 27%) are 15, 35 and 35 mV/pH. Thus, the pH-sensitivity property of the undoped NCD film is better than that of the nitrogen-doped NCD films.

目錄 致謝 I 摘要 II 英文摘要 III 圖目錄 VIII 表目錄 XI 第一章 前言 1 第二章 理論分析與文獻探討 3 2.1 鑽石基本物理與化學特性 3 2.2 氫離子吸附之理論與模型 5 2.3 pH-ISFET之工作原理 7 2.3.1 pH定義 7 2.3.2 延伸式閘極離子感測場效電晶體之原理 7 2.4 鑽石薄膜pH感測之應用 9 第三章 實驗步驟與方法 11 3.1 實驗流程 11 3.2 奈米鑽石薄膜之成長 11 3.3 實驗分析之儀器 13 3.3.1 場發射掃描式電子顯微鏡(FE-SEM) 13 3.3.2 顯微拉曼光譜儀 (Mirco-Raman) 14 3.3.3 X射線光電子能譜儀 (XPS) 14 3.3.4 傅利葉紅外線光譜儀(FTIR) 15 3.3.5 X光繞射分析儀(XRD) 16 3.3.6 原子力顯微鏡(AFM) 17 3.4 奈米鑽石薄膜之後處理 17 3.4.1 快速熱退火處理 17 3.4.2 四氟化碳電漿處理 18 3.5 奈米鑽石pH感測元件 18 3.5.1 奈米鑽石pH感測元件之備製 18 3.5.2 奈米鑽石pH感測元件之量測 19 第四章 結果與討論 21 4.1 奈米鑽石薄膜之特性 21 4.1.1 表面形態分析 22 4.1.2 X射線光電子能譜儀分析 24 4.1.3 拉曼光譜儀分析 26 4.1.4 X光繞射分析儀分析 28 4.1.5 傅利葉紅外線光譜儀分析 30 4.1.6 pH靈敏度分析 31 4.2 奈米鑽石薄膜快速熱退火後處理之特性 32 4.2.1 表面形態分析 32 4.2.2 X射線光電子能譜儀分析 34 4.2.3 拉曼光譜儀分析 36 4.2.4 X光繞射分析儀分析 38 4.2.5 傅利葉紅外線光譜儀分析 40 4.2.6 pH靈敏度分析 41 4.3 奈米鑽石薄膜之四氟化碳電漿後處理之特性 44 4.3.1 表面形態分析 44 4.3.2 X射線光電子能譜儀分析 46 4.3.3 拉曼光譜儀分析 50 4.3.4 X光繞射分析儀分析 52 4.3.5 傅利葉紅外線光譜儀分析 54 4.3.6 pH靈敏度分析 55 4.4 摻雜氮奈米鑽石薄膜之特性 58 4.4.1 表面形態分析 59 4.4.2 X射線光電子能譜儀分析 62 4.4.3 拉曼光譜儀分析 64 4.4.4 X光繞射分析儀分析 66 4.4.5 pH靈敏度分析 68 第五章 結論與未來研究 72 5.1 結論 72 5.2 未來研究 74 參考文獻

參考文獻
[1] P. Bergveld, “Development of an Ion Sensitive Solid-State Device for
Neurophysiological Measurement”, IEEE Transactions on Biomedical
Engineering, BME-17, PP.70-71 (1970).
[2] 武世香、虞惇,王貴華,化學量傳感器,傳感器技術,第1 期,
PP.57-62 (1990)。
[3] A. Topkar, R. Lal, “Effect of Electrolyte Exposure on Silicon Dioxide
in Electrolyte-Oxide-Semiconductor Structures”, Thin Solid Films, Vol.232, PP.265-270 (1993).
[4] B. D. Liu, Y. K. Su, S. C. Chen,“Ion-Sensitive Field-Effect Transistor with Silicon Nitride Gate for pH Sensing”, Int. J. Electronics,Vol. 67, PP.59-63 (1989).
[5] T. Matsuo, M. Esashi, “Method of ISFET Fabrication”, Sensors and Actuators, Vol. 1, PP.77-96 (1981).
[6] 武世香,虞惇,王貴華,“化學量傳感器”,傳感器技術,第2 期,
PP.53-58 (1991)。
[7] C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, and E.
Lora-Tamayo, “Multilayer ISFET Membranes for Microsystems
APPlications”, Sensors and Actuators B, Vol. 35-36, PP.136-140 (1996).
[8] Pavel neuzil, “ISFET Integrated Sensor Technology”, Sensors and
Actuators B, Vol. 24-25, PP.232-235 (1995).
[9] S. Caras, J. Janata, “Field Effect Transistor Sensitive to Penicillin”,
Analytical Chemistry, Vol. 52, PP.1935-1937 (1980).
[10] Keun Yong Park, Sang Bok Choi, Minho Lee, Byung Ki Sohn, Sit Young Choi, “ISFET Glucose Sensor System with Fast Recovery Characteristics by Employing Electrolysis”, Sensors and Actuators B, Vol.83, PP.90-97 (2002).
[11] C. Cane, A. Gotz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, E. Lora Tamayo,“Multilayer ISFET Membranes for Microsystems APPlications”, Sensors and Actuators B, Vol. 35-36, PP.136-140 (1996).
[12] Pavel Neuzil, “ISFET Integrated Sensor Technology”, Sensors and Actuators B, Vol. 24-25, PP.232-235 (1995).
[13] A. Garde, J. Alderman, W. Lane, “Development of a pH-Sensitive ISFET Suitable for Fabrication in a Volume Production Environment” Sensors and Actuators B, Vol. 26-27, PP.341-344 (1995).
[14] D. L. Harame, L. J. Bousse, J. D. Shott, J. D. Meindl, “Ion-Sensing Devices with Silicon Nitride and Borosilicate Glass Insulators”, IEEE Transactions on Electron Devices, Vol. ED-34, PP.1700-1707 (1987).
[15] M. N. Niu, X. F. Ding, Q. Y. Tong, “Effect of Two Types of Surface Sites on the Characteristics of Si3N4-Gate pH-ISFETs”, Sensors and Actuators B, Vol. 37, PP.13-17 (1996).
[16] Chih Ming Sue, Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping
Sun, Shen Kan Hsiung, “Study on Si3N4/SiO2 Gate Ion Sensitive Field Effect Transistor”, Proceedings of 1997 Electron Devices and Materials Symposium (EDMS), National Central University, Chung-Li,Taiwan, R.O.C., PP.383-386 (1997).
[17] Hung Kwei Liao, Jung Chuan Chou. Wen Yaw Chung, Tai Ping Sun, Shen Kan
Hsiung, “Study on the Interface Trap Density of the Si3N4/SiO2 Gate ISFET”, Proceedings of The 3rd International East Asian Conference on Chemical Sensors, Hoam Convention Center, Seoul National University, Seoul Korea, November 5-6, PP.394-400 (1997).
[18] Jung Chuan Chou, Chen Yu Weng, Hsjian Ming Tasi, “Study on the Temperature Effects of Al2O3 Gate pH-ISFET”, Sensors and Actuators B,Vol. 81, PP.152-157 (2002).
[19] L. Bousse, H. H van der Vlekkert, N. F. de Rooij, “Hysteresis in Al2O3-Gate ISFETs”, Sensors and Actuators B, Vol. 2, PP.103-110 (1990).
[20] D. H. Kwon, B. W. Cho, C. S. Kim, B. K. Sohn, “Effect of Heat Treatment on Ta2O5 Sensing Membrane for Low Drift and High Sensitivity pH-ISFET”, Sensors and Actuators B, Vol. 34, PP.441-445 (1996).
[21] Jung Chuan Chou, Ying Shin Li, Jung Lung Chiang, “Simulation of Ta2O5 Gate ISFET Temperature Characteristics”, Sensors and Actuators B, Vol. 71, PP.73-76 (2000).
[22] Jung Chuan Chou, Kai Ye Huang, Jin Sung Lin, “Simulation of Time Dependent Effects of pH-ISFETs”, Sensors and Actuators B, Vol. 62, PP.88-91 (2000).
[23] Chung Lin Wu, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan
Hsiung, “Study on SnO2/Al/SiO2/Si ISFET with a Metal Light Shield”,Materials Chemistry and Physics, Vol. 63, PP.153-156 (1999).
[24] Hung Kwei Liao, Li Lun Chi, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, “Study on pHpzc and Surface Potential of TinOxide Gate ISFET”, Materials Chemistry and Physics, Vol. 59, PP.6-11 (1999).
[25] Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan Hsiung, “Temperature and Optical Characteristics of Tin Oxide Membrane Gate ISFET”, IEEE Transactions on Electron Devices, Vol. 46(12), PP.2278-2281 (1999).
[26] Hung Kwei Liao, Jung Chuan Chou, Wen Yaw Chung, Tai Ping Sun, Shen Kan
Hsiung, “The Influence of Isothermal Annealing on Tin Oxide Thin Film for pH-ISFET Sensor”, Sensors and Actuators B, Vol. 65, PP.23-25 (2000).
[27] Jung Chuan Chou, Jung Lung Chiang, “Study on the Amorphous Tungsten Trioxide Ion Sensitive Field Effect Transistor”, Sensors and Actuators B, Vol. 66, PP.106-108 (2000).
[28] Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, “Study on the Temperature Effect, Hysteresis and Drift of pH-ISFET Device Based on Amorphous Tungsten Oxide”, Sensors and Actuators B, Vol. 76, PP.624-628 (2001).
[29] J. Van der Spiegel, I. Lauks, P. Chan D. Babic, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensors and Actuators B, Vol. 4, PP.291-298 (1983).
[30] Jung Lung Chiang, Jung Chuan Chou, Ying Chung Chen, “Study of the pH-ISFET and ENFET for Biosensor Applications”, Journal of Medical and Biological Engineering, Vol. 21(3), PP.135-146 (2001).
[31] S. Caras, J. Janata, “Field Effect Transistor Sensitive to Penicillin”, Analytical Chemistry, Vol. 52, PP.1935-1937 (1980).
[32] Karl E. Spear, John P. Dismukes, Synthetic diamond, The Electrochemical
Society Series, (1993)
[33] D. E. Yates, S. Levine, T. W. Healy, “Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface”, J. Chem. Soc. Faraday Trans. I, Vol. 70, PP. 1807-1818 (1974)
[34] Rilbe H., “pH and Buffer Theory-A New Approach”, Willey Series in Solution Chemistry, P.1 (1996).
[35] 維基百科,”http://zh.wikipedia.org/wiki/%E9%85%B8%E5%BA%A6”
[36] J. Janata, “Electrochemistry of Chemically Sensitive Field Effect Transistors”, Sensors and Actuators B, Vol. 4 PP.255-265 (1983).
[37~40]A. Poghossian, M.H. Abouzar, A. Razavi , M. Backer , N. Bijnensc, O.A.Williams , K. Haenenc,d,W. Moritze, P.Wagnerc, M.J. Schoning “Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si–SiO2 structure” Electrochimica Acta Vol.54 PP.5981–5985 (2009).
[41,42] P. Christiaens, M. H. Abouzar, A. Poghossian, T. Wagner, N. Bijnens,O. A. Williams, M. Daenen1, K. Haenen, O. Douhéret, J. D’Haen, Z. Mekhalif5, M. J. Schöning, and P. Wagner,” pH sensitivity of nanocrystalline diamond films” phys. stat. sol. (a) 204, No. 9, 2925–2930 (2007) / DOI 10.1002/pssa.200776326
[43,44] Jose A. Garrido, Andreas Härtl, Stefan Kuch, and Martin Stutzmann, Oliver A. Williams and R. B. Jackmann,” pH sensors based on hydrogenated diamond surfaces” APPLIED PHYSICS LETTERS Vol. 86, 073504 (2005)
[45] B. Rezek∗,1, D. Shin, H. Watanabe, C. E. Nebel,” Ion-sensitive field effect transistor on hydrogenated diamond” Sensors and Actuators B Vol.122 PP.596–599 (2007)
[46,47] Kwang-Soup Songa, Yusuke Nakamura, Yuichi Sasaki, Munenori Degawa, Jung-Hoon Yang, Hiroshi Kawarada,” pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface” Analytica Chimica Acta PP.573–574 (2006).
[48] C. E. Nebel, B. Rezek, D. Shin, H. Watanabe, and T. Yamamoto,” Electronic properties of H-terminated diamond in electrolyte solutions” JOURNAL OF APPLIED PHYSICS 99, 033711 2006
[49] A. Denisenko, G. Jamornmarn, H. El-Hajj, E. Kohn,” pH sensor on O-terminated diamond using boron-doped channel” Diamond & Related Materials Vol.16 PP.905–910 (2007)
[50]H. Voigt 1, F. Schitthelm *, T. Lange 2, T. Kullick 3, R. Ferretti,” Diamond-like carbon-gate pH-ISFET” Sensors and Actuators B Vol. 44 PP.441–445 (1997).
[51]武世香,虞惇,王貴華,“化學量傳感器”,傳感器技術,第5 期,
PP.57-62 (1991)。
[52]A. K. Chu, H. C. Lin, and W. H. Cheng, “Temperature Dependence of Refractive Index of Ta2O5 Dielectric Films”, Journal of Electronic Materials,Vol.26, No.8, PP.889-892 (1997).
[53] Somu Kumaragurubaran, Takatoshi Yamada, and Shinichi Shikata, “Core Level
Photoelectron Spectroscopic Study on Oxidized Phosphorus-Doped
[54] Anke Krueger, “The structure and reactivity of nanoscale diamond”, J. Mater. Chem. ,Vol 18 PP. 1485-1492 (2008).
[55] S. Ghodbane, A. Deneuville, “Specific features of 325 nm Raman excitation of heavily boron doped polycrystalline diamond films”, Diamond & Related Materials, P. 589 (2006).
[56] Pavia Lam man Kriz Vyvyan, “Introduction to Spectroscopy”, Fourth Edition PP. 29-35
[57] Xingbo Liang, Lei Wang, Xiaoqiang Li, Deren Yang, “Diamond nanocrystals and amorphous SiOx nanowires formed by rapid thermal annealing of carbon film”, Thin Solid Films Vol515 PP.6707–6712 (2007)
[58] H. Kawarada, “Hydrogen-terminated diamond surface and interfaces”, Surf. Sci. Rep. 26, P.205 (1996).
[59] F. K. de Theije, M. F. Reedijk, J. Arsic, W. J. P. van Enckevort, and E. Vlieg, “Atomic structure of diamond {111} surfaces etched in oxygen water vapor”, PHYSICAL REVIEW B, Vol. 64, 085403
[60] Ruth Klauser, Jin-Ming Chen , T.J. Chuang , L.M. Chen , M.C. Shih ,J.-C. Lin,
“The interaction of oxygen and hydrogen on a diamond C(111)surface: a synchrotron radiation photoemission, LEED and AES study”, Surface Science Vol356 PP.410-416 (1996)
[61] A. Denisenko, A. Romanyuk, C. Pietzka, J. Scharpf, E. Kohn,” Surface structure
and surface barrier characteristics of boron-doped diamond in electrolytes after
CF4 plasma treatment in RF-barrel reactor”, Diamond & Related Materials Vol.19 423–427 (2010)
[62] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J.
Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions”, Science, P. 494 (2000)
[63] I.I. Vlasov, V.G. Ralchenko, E. Goovaerts, A.V. Saveliev, M.V. Kanzyuba, “Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films” Phys. Stat. Sol. (a) 203 P.3028 (2006).

無法下載圖示 全文公開日期 2016/06/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE