簡易檢索 / 詳目顯示

研究生: 楊雅真
Ya-Jen Yang
論文名稱: NHx (x= 0 ~ 3)和NOx在RuO2(110)表面吸附和反應之理論計算研究
Theoretical Study of NHx (x= 0 ~ 3) and NOx Adsorption and Reaction on RuO2 (110) surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 魏金明
none
蔡大翔
Dah-Shyang Tsai
林聖賢
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 二氧化釔氮氧化物吸附反應能障虛頻
外文關鍵詞: RuO2, NHx, NOx, Adsorption, Reaction, barrier, frequency
相關次數: 點閱:308下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用DFT方法模擬0.5 ML和1 ML的NHx (x = 0~3)吸附在純RuO2(110)表面和0.5 ML的NHx (x = 0~3)吸附在富氧表面、NOx吸附在純RuO2(110)表面、NH3氧化反應、1 ML的NHx (x = 1, 2)自身反應、NOx氧化還原反應。計算結果顯示NHx吸附能和表面重建的現象會隨著N原子上的H數目減少而增加,即Ncus有最大的吸附能。NH3分子則考慮兩部分反應: (1) N-H鍵裂解; (2)形成NO或N2分子。N-H鍵裂解反應是H遷移到RuO2(110)表面鄰近的氧原子(Ocus和Obr)上,在表面形成OH或H2O; N-H鍵裂解完後,表面上的N會和鄰近的N原子或氧原子結合。在氨氧化反應中顯示表面Ocus比Obr活性高,在形成OH、H2O及NO反應中,和Ocus或OHcus反應所得能障較低,在這些反應中最大能障1.09 eV,此結果和Wang等人實驗結果吻合[30],而反應後所產生的NOcus的脫附能較高,也和實驗相吻合。高覆蓋率下,NHx (x = 1, 2)在純RuO2(110)表面容易反應成不對稱的吸附方式,顯示自身反應扮演很重要的角色。另外,NOx吸附在純RuO2(110)表面,NO3cus之吸附能最大;而在NOx氧化還原反應中,當表面含Ncus多時,反應路徑傾向形成N2O,而表面含Ocus多時,反應路徑傾向形成NO2。


    The adsorption of NHx species (x = 0 ~ 3) on clean RuO2 (110) surface with 0.5 ML and 1 ML coverage, and the adsorption on oxygen-rich surface, and the adsorption of NOx on clean RuO2 (110) surface, and NH3 oxidation reactions, and the self-reactions of NHx (x = 1, 2) with 1 ML coverage, and NOx redox reaction are simulated by density functional theory (DFT). Vienna ab-initio simulation package (VASP) is applied in this work. The binding energies and surface reconstruction of NHx species increase as the number of hydrogen decreased on N atom, i.e. Ncus has the highest binding energy. The NH3 oxidation reaction can be considered two parts, the N-H bond dissociations and the formation of NO or N2 molecule on the surface. In N-H dissociation, the hydrogen atoms migrate to the neighboring oxygen atoms on RuO2 (110) surface (Ocus and Obr), and the OH or H2O forms on the surface; and the second part, after N-H bonds dissociated, the nitrogen atom can combine with another nitrogen atom or the surface oxygen atom. The surface Ocus shows the higher activity than Obr in the ammonia oxidation. In formation of OH, H2O and NO, reactions with Ocus or OHcus have lower reaction barriers, and the highest barrier in these reactions is 1.09 eV. This result consists with the previous experiments by Wang et al. [30]. After the reaction, the higher desorption energy of NOcus also consists with the higher desorption temperature in experiment. The self-reactions of NHx (x = 1, 2) with 1 ML coverage have lower reaction barriers, and that prefer asymmetry adsorption. In addition, the adsorption of NOx on clean RuO2 (110) surface, NO3 has the highest binding energy. In NOx redox reaction, the availability of chemisorbed Ocus or Ncus controls the selectivity towards NO2 or N2O.

    目錄 頁次 摘 要.................................................................... I Abstract...................................................................II 致 謝...................................................................III 目 錄....................................................................IV 圖目錄.....................................................................VI 表目錄...................................................................VIII 第一章 緒論..............................................................1 1.1 前言.............................................................1 1.2 燃料電池的基本原理...............................................1 1.2.1 固態氧化物燃料電池(SOFC) ............................................2 1.2.2 氧化釔(RuO2) .......................................................3 1.2.3 RuO2晶體結構....................................................4 1.2.4 RuO2晶體穩定性及應用............................................5 1.2.5 RuO2晶體之導電性...............................................6 1.2.6 RuO2 (110)表面...............................................7 1.2.7 RuO2 (110)表面的氣相反應特 ...................................9 1.3 氨(Ammonia) ....................................................9 1.3.1製造方法........................................................10 1.3.2主要用途........................................................10 1.4 氮氧化物(NOx) ................................................12 1.4.1空氣污染物....................................................12 1.4.2空氣污染的影響................................................12 1.4.3空氣污染防制技術..............................................16 1.5 表面氣相吸附和反應之文獻回顧..................................20 1.6 研究動機及目的................................................22 第二章 理論計算方法.......................................................24 2.1 量子化學......................................................24 2.2 計算化學發展與理論............................................24 2.2.1 密度泛函理論(Density Functional Theory) .....................25 2.2.2 The Hohenberg-Kohn Theorem...................................27 2.2.3 The Kohn-Sham Equation.......................................28 2.2.4 LDA和GGA.....................................................29 2.3 週期系統處理..................................................30 2.3.1 Bloch’s Theorem.............................................30 2.3.2 Plane-Wave Basis Set.........................................31 2.3.3 贋勢(Pseudopotential) .......................................31 2.3.4 Projector Augmented-Wave (PAW) Method........................32 2.4 Nudged Elastic Band Method (NEB) .............................33 2.5 K點取樣(K-point Sampling) ....................................34 2.6 幾何優化(geometry optimization) ..............................34 2.7 振動頻率(frequency) ..........................................35 2.8 計算方法......................................................35 第三章 結果與討論.........................................................36 3.1 實驗模型建立......................................................36 3.1.1 RuO2晶體之單位晶胞(Unit-Cell) .....................................36 3.1.2 RuO2(110)表面......................................................37 3.2 氣體分子在RuO2(110)表面的吸附.....................................42 3.2.1 NHx (x = 0~3)和N2氣體分子吸附在純RuO2(110)表面及其富氧表面- 0.5 ML覆蓋 率.................................................................42 3.2.2 NHx (x = 0~3) 吸附在純RuO2(110)表面 – 1 ML覆蓋率..................50 3.2.3 NOx氣體分子在純RuO2(110)表面的吸附.................................52 3.3 氨在RuO2(110)表面之氧化反應.......................................55 3.3.1 NHx (x = 0~3)在RuO2(110)表面之氧化反應-0.5ML覆蓋率.................55 3.3.2 NHx (x = 1, 2)在RuO2(110)表面的自身反應............................68 3.4 NOx在RuO2(110)表面之反應..........................................72 第四章 結論..........................................................82 第五章 參考文獻......................................................85 圖目錄 圖目錄....................................................................VI 圖1-1 固態氧化物燃料電池的發電機置原理....................................3 圖1-2 三相界(Triple phase boundary,TPB)圖................................3 圖1-3 高覆蓋率的氧在Ru(0001)表面之結構圖..................................7 圖1-4 Ru(0001)晶體在溫度700 K,10-2 mbar O2的環境下所得掃描穿邃式顯微(STM)影像 (1000 Å × 1000 Å) ..................................................8 圖1-5 RuO2(110)表面,大(綠色)球為O原子(Obr和O3f),小(紫色和紅色)球分別是六配位 Ru原子(Ru6f)和五配位Ru原子(Ru5f).....................................8 圖1-6 純RuO2(110)表面在UHV系統,室溫下,曝少量O2的環境下所得掃描穿邃式顯微鏡 (STM)影像(80Å × 50Å) ...............................................9 圖1-7 常用的空氣污染防制技術及設備分類....................................17 圖2-1 贗勢跟虛波函數與真實位勢和波函數相互關係............................32 圖2-2 PAW方法之示意圖.....................................................33 圖2-3 虛線為直線連接起點及終點的線性路徑,實線為NEB法計算得到的MEP路線....34 圖3-1 RuO2單位晶胞模型 (a) RuO2晶體結構(b) x軸方向(c) y軸方向(d) z軸方 向..................................................................37 圖3-2 RuO2(110)表面模型(a)計量係數比例之RuO2(110)表面(b)在富氧環境下之RuO2 (110)表面...........................................................38 圖3-3 原子重組計算之RuO2(110)面模型(a)俯視圖(Top View)(b)側視圖(Side View) .....................................................................39 圖3-4 氨的氣體分子吸附在金屬上之示意圖....................................42 圖3-5 0.5 ML覆蓋率的NHx (x=0~3)和N2分子在純RuO2(110)表面之吸附結構........47 圖3-6 0.5ML覆蓋率的NHx (x=0~3)和N2分子在RuO2(110)富氧表面之吸附結構.......48 圖3-7 1 ML覆蓋率的NHx (x = 0~3)在純RuO2(110)表面的吸附結構................52 圖3-8 氣相環境下兩個NO可能產生之產物(a) N2O2 (b) (NO)2雙聚體..............53 圖3-9 NOx在純RuO2(110)表面的吸附結構......................................55 圖3-10 氨在純RuO2(110)表面的氧化反應之結構圖...............................58 圖3-11 氨在富氧的RuO2(110)表面的氧化反應之結構圖...........................59 圖3-12 氮在RuO2(110)表面的氧化反應之結構圖.................................63 圖3-13 NHx + NHx (x = 1, 2)在純RuO2(110)表面的自身反應結構圖...............69 圖3-14 N + NO在RuO2(110)表面反應之結構圖...................................75 圖3-15 N2O在RuO2(110)表面異構化反應之結構圖................................77 圖3-16 N2O-b在RuO2(110)表面分解反應之結構圖................................78 圖3-17 O + NO和O + NO2在RuO2(110)表面反應之反應物,過渡態和產物的結構......80 表目錄 表目錄...................................................................VIII 表3-1 最佳化結構所得RuO2單位晶胞之晶格數..................................36 表3-2 RuO2(110)表面重構現象之變化量.......................................40 表3-3 RuO2表面原子鬆弛現象之變化量........................................41 表3-4 NHx(x = 0~3)和N2在純RuO2(110)表面ISPIN=1、2之吸附能比較.............43 表3-5 NHx(x = 0~3)和N2在RuO2(110)富氧表面ISPIN=1、2之吸附能比較...........43 表3-6 NHx和N2在純RuO2(110)表面結構參數,吸附能和Ru-N、N-H伸縮振動頻率之比 較..................................................................44 表3-7 NHx和N2在富氧的RuO2(110)表面結構參數,吸附能和Ru-N、Ru-O、N-H伸縮振動頻 率之比較............................................................46 表3-8 NHx和N2吸附在純RuO2(110)表面的原子重構和鬆弛現象之變化量............49 表3-9 NHx和N2吸附在富氧RuO2(110)表面的原子重構和鬆弛現象之變化量..........50 表3-10 0.5和1 ML覆蓋率的NHx在純RuO2(110)表面結構參數和吸附能之比較.........51 表3-11 NOx在純RuO2(110)表面結構參數和吸附能之比較..........................54 表3-12 0.5 ML NHx (x = 1~3 )在純RuO2(110)表面氧化反應的反應物,過渡態和產物之結 構參數比較..........................................................61 表3-13 0.5 ML NHx (x = 1~3 )在富氧RuO2(110)表面氧化反應的反應物,過渡態和產物之 結構參數比較........................................................62 表3-14 氮在RuO2(110)表面再結合和氧化反應的反應物,過渡態和產物之結構參數比 較..................................................................64 表3-15 NHx在RuO2(110)表面氧化反應的能障, 反應熱和過渡態虛頻和600K下速率常數之比 較..................................................................67 表3-16 NHx在不同表面氧化反應的能障(eV)之比較...............................68 表3-17 NHx + NHx (x = 1, 2)在RuO2(110)表面自身反應的反應物,過渡態和產物之結構 參數比較............................................................71 表3-18 NHx + NHx (x = 1, 2)在純RuO2(110)表面的自身反應之能障、反應熱、過渡態虛 頻和600K下速率常數之比較............................................72 表3-19 N + NO在RuO2 (110)表面反應之反應物,過渡態和產物的結構參數比較......74 表3-20 N2O在RuO2(110)表面異構化反應之結構參數比較..........................76 表3-21 N2O在RuO2(110)表面分解反應之反應物、過渡態和產物的結構參數..........78 表3-22 NO + O和NO2 + O在RuO2 (110)表面反應之反應物,過渡態和產物的結構參數比 較..................................................................79 表3-23 NOx在RuO2(110)表面反應之能障, 反應熱和過渡態虛頻的比較..............81

    第五章 參考文獻
    1. L.Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells 2001, 1, 5.
    2. J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed. John Wiley & Sons, Wese Sussex, Engliand (2003)
    3. 鄭佑章碩士論文,國立台灣科技大學化學工程系,94年7月。
    4. 謝育淇碩士論文,國立台灣科技大學化學工程系,94年7月。
    5. J. W. Long, R. M. Stroud, K. E. Swider-Lyons, and D. R. Rolison, J. Phys. Chem. B 2000, 104, 9772.
    6. M. Tomkiewicz, Y. S. Huang, and F. H. Pollak, J. Electrochem. Soc. 1983, 130, 1514.
    7. T. E. Lister, Y. Chu, W. Cullen, H. You, R. M. Yonco, J. F. Mitchell, and Z. Nagy, J. Electroanaly. Chem. 2002, 524, 201.
    8. Y. S. Chu, T. E. Lister, W. G. Cullen, H. You, and Z. Nagy, Phys. Rev. Lett. 2001, 86, 3364.
    9. S. Y. Mar, J. S. Liang, C.Y. Sun, and Y. S. Huang, Thin Solid Films 1994, 238, 158.
    10. C. C. Tseung and K. Y. Chen, Catal. Today 1997, 1, 1077.
    11. S. Trasatti, Electrochim. Acta 2000, 45, 2377.
    12. L. F. Mattheiss, Phys. Rev. B 1976, 13, 2433.
    13. W. D. Ryden and A. W. Lawson, Phys. Rev. B 1970, 1, 1494.
    14. R. C. Weast, Handbook and Chemistry and Physics 1989, F146.
    15. R. R. Daniels and G. Margaritiondo, Phys. Rev. B 1984, 29, 1813.
    16. H. Over and M. Muhler, Progress in Surface Science 2003, 72, 3.
    17. Y. D. Kim, A. P. Seitsonen and H. Over, Surf. Sci. 2000, 465, 1.
    18. H. Over, Y. D. Kim, A. P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, and G. Ertl, Sci. 2000, 287, 1474.
    19. L. F. Mattheis, Phys. Rev. B 1976, 13, 2433.
    20. K. M. Glassford, and J. R. Chelikowsky, ibid 1994, 49, 7107.
    21. W. Kohn and L. J. Sham, Phys. Rev. 1965, 140, 1133A.
    22. J. P. Perdew and Y. Wang, Phys. Rev. B 1986, 33, 8800.
    23. J. P. Perdew and Y. Wang, Phys. Rev. B 1992, 46, 6671.
    24. http://www.ammonia.org.tw/toasun/2-2.pdf
    25.侯永豐碩士論文,明道管理學院材料暨系統工程研究所, 96 年7 月。
    26. A. P. Seitsonen, Y. D. Kim, M. Knapp, S. Wendt, and H. Over, Phys. Rev. B 2001, 65, 035413.
    27. M. Knapp, A. P. Seitsonen, Y D. Kim, and H. Over, J. Phys. Chem. B 2004, 108, 14392.
    28. 王仁君碩士論文,國立台灣科技大學化學工程系,94年7月。
    29. J. H. Ahn, W. Y. Choi, W. J. Lee, and H. G. Kim, Jpn. J. Appl. Phys. 1998, 37, 284.
    30. Y. Wang, K. Jacobi, W. D. Schöne, and G. Ertl, J. Phys. Chem. B 2005, 109, 7883.
    31. C. J. Weststrate, J. W. Bakker, E. D. L. Rienks, C. P. Vinod, A. V. Matveev, V. V. Gorodetskii, and B. E. Nieuwenhuys, J. Catal. 2006, 242, 184.
    32. Y. Wang, A. Lafosse, and K. Jacobi, Surf. Sci. 2002, 507.
    33. K. Jacobi, Y. Wang, and G. Ertl, J. Phys. Chem. B 2006.
    34. C. J. Weststrate, J. W. Bakker, E. D. L. Rienks, J. R. Martinez, C. P. Vinod, S. Lizzit, L. Petaccia, A. Baraldi, and B. E. Nieuwenhuys, J. Catal. 2005, 235, 92.
    35. J. F. Paul, P. R. Javier, F. Ample, and J. M. Ricart, J. Phys. Chem. B 2004, 108, 17921.
    36. Y. Wang, K. Jacobi, and G. Ertl, J. Phys. Chem. B 2003, 107, 13918.
    37. S. Hong, T. S. Rahman, K. Jacobi, and G. Etrl, J. Phys. Chem. C 2007.
    38. R. Burch, S. T. Daniells, and P. Hu, J. Chem. Phys. 2002, 117, 2902.
    39. A. Kokalj, I. Kobal, H. Horino, Y. Ohno, and T. Matsushima, Surf. Sci. 2002, 506, 196.
    40. A. Kokalj and T. Matsushima, J. Chem. Phys. 2005, 122, 034708.
    41. 王嘉慶碩士論文,國立台灣科技大學化學工程系,95年7月。
    42. http://203.68.20.65/science/content/1985/00030183/0003.htm
    43. http://www.dfmg.com.tw/safe/safe/7617.html
    44. http://www.greeneducation.org.hk/focus/old.htm#甚麼是空氣污染?
    45. http://zh.wikipedia.org/wiki/
    46. http://zh.wikipedia.org/
    47. http://www.environet.org.tw/products/2.html
    48. A. Szabo and N. S. Ostlund; Modren Quantum Chemistry. 1st ed.;McGRAW-HILL: New York: 1982.
    49. 劉東昇,化學量子力學。徐氏基金會:1998.
    50. I. N. Levine, Quantum Chemistry.5th ed.;Prentice Hall: 2000.
    51. 蘇世剛;牟中原,化學 1989, 47, 308.
    52. A. E Frisch and J. B. Foresman, Exploring Chemistry with Electronic Structure Methods. 2nd ed,Gaussiain,Inc.: 1996.
    53. W. J. Hehre, J. Yu, P. E Klunzunger, and L. Lou, A Brief Guide to Molecular Mechanics and Quantum Chemiscal Calculations. Wavefunction, Inc: Irvune, 1998.
    54. W. J. Hehre, L. Radom, P. V. R. Scklyer, and J. A. Pople, ab initio Molecular Orbital Theory. John Wiley & Sons: New York,1986.
    55. P. Hohenberg and W. Kohn, Phys. Rev. B 1964, 136, 864.
    56. J. B. Foresman, Exploring Chemistry with Electronic Strcture Methods. 2nd ed.; 1964.
    57. W. Kohn and L.J. Sham, Phys. Rev. A 1965, 140, 1133.
    58. C. Broedersz, Density Functional Theory and its application to solids, Vrije University, Amsterdam (2007).
    59. D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
    60. P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
    61. H. Jonsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitiona, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. B. J. Berne, G. Ciccoti, and D. F. Coker (World Scientific, 1998)
    62. G. Henkelman and H. Jonsson, Phys. Rev. Lett. 1994, 72, 1124.
    63. Accelry Inc., San Diego, CA, USA; see more setail at http://www.accelry.com
    64. JCPDS card #40-1290.
    65. H. Orita, I. Nakamura, and T. Fujitani, J. Chem. Phys. 2005, 122, 014703.
    66. Y. Wang and K. Jacobi, Surf. Sci. 2002, 513, 83.
    67. C. Popa, R. A. van Santen, and A. P. J. Jansen, J. Phys. Chem. C 2007, 111, 9839.
    68. R. Imbihl, A. Scheibe, Y. F. Zeng, S. Günther, R. Kraehnert, V. A. Kondratenko, M. Baerns, W. K. Offermans, A. P. J. Jansen ,and R. A. van Santen, Phys. Chem. Chem. Phys. 2007, 9, 3522.

    無法下載圖示 全文公開日期 2009/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2010/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE