簡易檢索 / 詳目顯示

研究生: 黃俊豪
Jyun-Hao Huang
論文名稱: 具電荷模式控制之 應用於功能性電刺激系統之降壓轉換器
A Buck Converter with Charge-Mode Control for Functional Electrical Stimulation System
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 姚嘉瑜
Chia-Yu Yao
陳筱青
Hsiao-chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 65
中文關鍵詞: 電荷模式控制降壓轉換器頻率補償電流感測電路堆疊功率電晶體單電感雙輸出
外文關鍵詞: charge-mode control, buck converter, frequency compensation, current sensing circuit, stacked power MOS, single-inductor dual-output
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一應用於電刺激系統單晶片之電能轉換器電路,為了電刺激晶片阻抗偵測電路之需求,本文提出一降壓轉換器來產生穩定電源電壓於電刺激晶片,以達到自適應之功能。再者,相較於普遍常見所採用之電壓與電流控制模式,為了簡化頻率補償器之元件數與防止次諧波振盪,控制電路以所需與供給能量相等之概念,並選擇電荷控制模式來實現成晶片。此外,因降壓轉換器晶片採用一般 0.18 微米製程,功率開關採用堆疊架構以增加電晶體可靠度,如此一來,降壓轉換器即能將鋰電池作為能量轉換之輸入,而不會有過壓之問題。在將來,電能轉換器甚至可擴展到多輸出之架構,因此,本篇論文亦有提出單電感雙輸出降壓轉換器之設計與模擬結果,而雙輸出分別為電刺激系統單晶片之數位與類比電路之電源所使用。此晶片採用 0.18 微米的互補式金氧半製程來實現。量測結果與問題分析將在第三章提出解釋。


    A power converter circuit applied to an electrical stimulation SOC is proposed in this thesis. In order to meet the demand of the electrical stimulation chip impedance sensing circuit, a step-down converter generates the stable voltage on the electrical stimulation chip to achieve adaptive function is presented in this thesis. Furthermore, compared with the commonly used voltage and current control modes. To simplify the number of components of the frequency compensator and prevent sub-harmonic oscillation, the control circuit uses the concepts of the required energy and provided energy are always equal, and selects the charge control mode to implement the chip. Besides, because the buck converter chip is fabricated in general 0.18um CMOS process, the power switch adopts a stacked structure to increase the reliability of transistors. In this way, the buck converter could use the Li-ion battery as an input for energy conversion without overstress issue. In the future, the power converter could even be extended to the multi-output architecture. Therefore, this thesis also proposes the design and simulation results of the single-inductor dual-output buck converter. The dual outputs are used for the power supply of the digital and analog circuits of the electrical stimulation SoC, respectively. The chip is designed and fabricated in a 0.18um CMOS process. The measurement result and issue analysis will be explained in 3.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background Knowledge of DC-­DC Converters . . . . . . . . . . . . . . . . . . 5 2.1 DC­-DC Converter for Voltage Scaling . . . . . . . . . . . . . . . . . . . 5 2.1.1 Linear Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Switched Capacitor DC­-DC Converters . . . . . . . . . . . . . . 6 2.1.3 Inductor­Based Switching DC­-DC Converters . . . . . . . . . . . 7 2.2 Basics of DC-­DC Buck Converters . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 The Principle of Inductor Volt­second Balance . . . . . . . . . . 7 2.2.2 The Principle of Capacitor Charge Balance . . . . . . . . . . . . 8 2.2.3 The Principle of Small Ripple Approximation . . . . . . . . . . . 9 2.3 Introduction of Operation Principle . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Continuous Conduction Mode (CCM) . . . . . . . . . . . . . . . 10 2.3.2 Discontinuous Conduction Mode (DCM) . . . . . . . . . . . . . 11 2.4 The Mechanisms of Closed­loop Control . . . . . . . . . . . . . . . . . . 12 2.4.1 Pulse­width Modulation (PWM) . . . . . . . . . . . . . . . . . . 12 2.4.2 Pulse­frequency Modulation (PFM) . . . . . . . . . . . . . . . . 13 2.5 Types of Feedback Control Schemes . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Voltage-­Mode Control . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 Current-­Mode Control . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.3 Charge-­Mode Control . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Significant Parameters of DC-­DC Converter . . . . . . . . . . . . . . . . 17 2.6.1 Line Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.2 Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.3 Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.4 Switching Loss and Conduction Loss . . . . . . . . . . . . . . . 19 2.6.5 Conversion Efficiency . . . . . . . . . . . . . . . . . . . . . . . 19 3 Proposed SISO Charge­Mode Buck Converter System . . . . . . . . . . . . . . 21 3.1 Architecture and Operation of the SISO Charge­Mode Buck Converter System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Frequency Response Analysis of SISO Buck Converter . . . . . . 23 3.2.2 Significant Parameters of Components . . . . . . . . . . . . . . . 32 3.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Stacked Power MOS . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Inductor Current Sensor . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 Error Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Simulation and Measurement Results . . . . . . . . . . . . . . . . . . . 46 3.4.1 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Proposed SIDO Charge­Mode Control Buck Converter System . . . . . . . . . 50 4.1 Architecture and Operation of the SIDO Charge­Mode Buck Converter System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Transient Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.1 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Control Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 Comparison and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    [1] M. L. Kringelbach, N. Jenkinson, S. L. Owen, and T. Z. Aziz, “Translational principles of deep brain stimulation,” vol. 8, no. 8, pp. 623–635, 2007.
    [2] P. Gildenberg, “Evolution of neuromodulation,” vol. 83, no. 2, pp. 71–79, 2005.
    [3] J. Niparko, Cochlear implants, principles and practices. Philadelphia: Lippincott
    Williams and Wilkins, 2009.
    [4] G. Dagnelie, “Retinal implants –emergence of a multidisciplinary field,” vol. 25,
    no. 1, pp. 67–75, 2012.
    [5] D. Maksimovic, “Power management model and implementation of power management ICs for next generation wireless applications,” Tutorial Presented at the International Conference on Circuits and System(ISCAS), 2002.
    [6] P. Favrat, P. Deval, and M. J. Declercq, “A High­Efficiency CMOS Voltage Doubler,” IEEE Journal of Solid–State Circuits, vol. 33, pp. 410–416, March 1998.
    [7] Y.­C. Hsu, C.­Y. Ting, L.­S. Hsu, J.­Y. Lin, and C. C.­P. Chen, “A Transient Enhancement DC–DC Buck Converter With Dual Operating Modes Control Technique,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
    Processing, vol. 66, pp. 1376–1380, August 2019.
    [8] J.­D. Suh, J. Seok, and B.­S. Kong, “A Fast Response PWM Buck Converter With
    Active Ramp Tracking Control in a Load Transient Period,” IEEE Transactions on
    Circuits and Systems II: Analog and Digital Signal Processing, vol. 66, pp. 467–471,
    March 2019.
    [9] C.­F. Lee and P. K. T. Mok, “A Monolithic Current­Mode CMOS DC–DC Converter
    With On­Chip Current­Sensing Technique,” IEEE Journal of Solid–State Circuits,
    vol. 39, pp. 3–14, January 2004.
    [10] M. Du and H. Lee, “An Integrated Speed­ and Accuracy­Enhanced CMOS Current
    Sensor With Dynamically Biased Shunt Feedback for Current­Mode Buck Regulators,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 57, pp. 2804–2814, October 2010.
    [11] W. Tang, F. C. Lee, R. B. Ridley, and I. Cohen, “Charge Control: Modeling, Analysis,
    and Design,” IEEE Transactions on Power Electronics, vol. 8, pp. 396–403, October
    1993.
    [12] N.­S. Pham, T. Yoo, T. T.­H. Kim, C.­G. Lee, and K.­H. Baek, “A 0.016 mV/mA
    Cross­Regulation 5­Output SIMO DC–DC Buck Converter Using Output­VoltageAware Charge Control Scheme,” IEEE Transactions on Power Electronics, vol. 33,
    pp. 9619–9630, November 2018.
    [13] S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, “20uA to 100mA DC–
    DC Converter With 2.8­4.2 V Battery Supply for Portable Applications in 45 nm
    CMOS,” IEEE Journal of Solid–State Circuits, vol. 46, pp. 2807–2820, December
    2011.
    [14] C.­W. Liu, Y.­L. Chen, P.­C. Liao, S.­P. Lin, T.­W. Wang, M.­J. Chung, P.­H. Chen,
    M.­D. Ker, and C.­Y. Wu, “An 82.9Management Unit for Implantable Neuron Stimulator in 180­nm Standard CMOS,” IEEE Transactions on Circuits and Systems II:
    Analog and Digital Signal Processing, vol. 66, pp. 788–792, May 2019.
    [15] P.­J. Liu, C.­Y. Hsu, and Y.­H. Chang, “Techniques of Dual­Path Error Amplifier
    and Capacitor Multiplier for On­Chip Compensation and Soft­Start Function,” IEEE
    Transactions on Power Electronics, vol. 30, pp. 1403–1410, March 2015.
    [16] T.­Y. Goh and W.­T. Ng, “Single Discharge Control for Single­Inductor MultipleOutput DC–DC Buck Converters,” IEEE Transactions on Power Electronics, vol. 33,
    pp. 2307–2316, March 2018.

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 2026/02/01 (校外網路)
    全文公開日期 2026/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE