簡易檢索 / 詳目顯示

研究生: 李威霖
William Anderson Lee Sanchez
論文名稱: Development of Highly Thermally Conductive Epoxy Composites and Their Application in Electronic Encapsulation Packaging
Development of Highly Thermally Conductive Epoxy Composites and Their Application in Electronic Encapsulation Packaging
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
李宗銘
Tzong-Ming Lee
邱國展
Kuo-Chan Chiou
鄭智嘉
Chih-Chia Cheng
梁國全
Guo-Quan Liang
楊任凱
Jen-Kai Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 115
中文關鍵詞: 電子封裝底部填充材料複合填料氧化鋁氮化鋁氮化硼導熱係數熱紅外影像
外文關鍵詞: electronic encapsulation packaging, underfill material, hybrid filler, alumina, aluminum nitride, boron nitride, thermal conductivity, thermal infrared images
相關次數: 點閱:299下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著電子應用不斷地發展,主要是通過改變設備的尺寸來實現設備速度的改善。然而,這也導致電子設備運行期間產生的熱能增加。由於熱能的積累,電子設備的穩定性和壽命將隨著其工作溫度的升高而受到影響。因此,為了將設備的工作溫度保持在可接受的水平,盡可能快速有效地散發產生的熱能變成重要的課題之一。
為了解決這些問題,該研究進行了兩項不同的主題,以設計、生產和表徵具有高導熱填料 (如氮化硼(BN)、氧化鋁(Al2O3)和氮化鋁(AlN)) 的多功能環氧複合材料。在第一部分中,環氧樹脂作為基材並與微球型氧化鋁和片狀氮化硼相結合,製成Al2O3-BN/EP複合材料。在第二部分中,將功能化的 AlN 微球和 BN 薄片與環氧樹脂基體和含矽烷之Xiameter OFS-6040 結合,以增強無機填料在環氧樹脂基體中的分散性與相容性,形成 AlN-BN/EP 複合材料。
這些複合材料是通過簡單的程序製成的。它們的特點是基於它們的熱、電和實際應用特性。複合材料的製造證明了提高導熱性的概念可以成功地應用於電子熱管理,為新一代 IC 底部填充密封劑的生產帶來新的機遇。


The constant development in electronic applications has led to the upgrading of the speed of the devices by mainly changing the dimension of them. However, those improvements also have resulted in an increase of heat generated during the operation of the electronic devices. The stability and lifespan of the electronic devices will be affected as their operating temperature rise, due to the heat accumulation. Hence, it is really important to dissipate this heat produced as fast and effectively as possible, in order to keep the working temperatures of the device at an acceptable level.
In order to solve those problems, two different studies were carried out to design, produce and characterize multifunctional epoxy composites with highly thermally conductive fillers, such as boron nitride, alumina and aluminum nitride. In the first part, epoxy matrix was merged with alumina micro-spheres and BN flake-like particles to make Al2O3-BN/EP composites. In the second part, functionalized AlN micro-spheres and BN platelets were combined with the epoxy matrix and silane Xiameter OFS-6040 to enhance the dispersibility and compatibility of the inorganic fillers into the epoxy-matrix, creating the AlN-BN/EP composites.
Those composites were made by means of a facile procedure. They were characterized based on their thermal, electrical and practical application properties. The composites were fabricated to demonstrate that the concept of thermal conductivity improvement can be successfully applied to electronic thermal management, bringing new opportunities for the production of new generation of IC underfill encapsulants.

Chinese Abstract (中文摘要) I Abstract II Acknowledgements III Table of Contents IVV List of Figures VII List of Tables VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2 Literature Review 3 2.1 Thermal Conduction Properties 3 2.1.1 Definition of Thermal Conductivity 3 2.1.2 Heat Transfer Mechanism ¡Error! Marcador no definido. 2.1.3 Heat Transfer Mechanism in Crystalline 6 2.1.4 Heat Transfer Mechanism in Polymers 7 2.1.5 Heat Transfer Mechanism in Polymer Composites 8 2.2 Underfill Encapsulation Packaging Materials 9 2.3 Packing Density 11 2.3.1 Significance of Packing Density on Composites Materials 11 2.3.2 Influence of Packing Density on Composites 15 Chapter 3 Experiment Section 18 3.1 Materials 18 3.2 Instruments and Characterization 22 3.2.1 Fourier-Transform Infrared Spectroscopy (FTIR) 22 3.2.2 Viscosity 22 3.2.3 Hot Disk 22 3.2.4 Thermal Infrared Images 22 3.2.5 Linear Coefficient of Thermal Expansion (CTE) 23 3.2.6 Field Emission Scanning Electron Microscopy (SEM) 23 3.2.7 Thermogravimetric analysis (TGA) 23 3.2.8 Dielectric Properties 24 Chapter 4 Enhanced Thermal Conductivity of Epoxy Composites Filled with Al2O3/Boron Nitride Hybrids for Underfill Encapsulation Materials 25 4.1 Abstract 25 4.2 Introduction 26 4.3 Experimental Section 29 4.3.1 Materials 29 4.3.2 Epoxy Resin System Selection 30 4.3.3 Fabrication of Al2O3-BN/EP Composites 32 4.4 Results and Discussion 35 4.4.1 FTIR 35 4.4.2 Rheological Study 36 4.4.3 Thermal Conductivity of EP Composites 38 4.4.4 Composites Thermal Management Capacity 40 4.4.5 Glass Transition Temperature and Coefficient of Thermal Expansion of EP Composites 43 4.4.6 Morphological Observation of Al2O3-BN/EP Composites 45 4.4.7 Thermal Stability 47 4.4.8 Electrical and Dielectric Properties 48 4.5 Summary 51 Chapter 5 Highly Thermally Conductive Epoxy Composites Filled with AlN/BN Hybrids as Underfill Encapsulation Material for Electronic Packaging 52 5.1 Abstract 52 5.2 Introduction 53 5.3 Experimental Section 56 5.3.1. Materials 56 5.3.2. Fabrication of AlN-BN/EP Composites 57 5.4. Results and Discussion 59 5.3.1. FTIR 59 5.3.2. Synergistic Relation between the Rheological Study and Thermal Conductivity of EP Composites 60 5.3.3. Thermal Management Capability of Composites 65 5.3.4. Impact of Fillers on Tg and CTE of Composites 67 5.3.5. Morphological Examination of EP Composites 70 5.3.6. Thermal Stability of EP Composites 72 5.3.7. Electric properties of EP composites 75 5.5. Summary 77 Chapter 6 Conclusions 78 References 80 Chapter 7 Appendix 103 7.1. Publication List (國際期刊論文) 103 7.2. Conference Participations 104 7.3. Awards 104

1. Sim, L.; Ramanan, S. R.; Ismail, H.; Seetharamu, K. N.; Goh, T. J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 2005, 430, 155-165.
2. Fu, Y. X.; He, Z. X.; Mo, D. C.; Lu, S. S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014, 66, 493-498.
3. Lee, W.S.; Yu, J. Comparative study of thermally conductive fillers in underfill for the electronic components. Diam. Relat. Mater. 2005, 14, 1647–1653.
4. Kumar, R.; Mohanty, S.; Nayak, S. K. Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids. Mater. Today Commun. 2019, 20, 100561.
5. Yue, C.; Guan, L.; Zhang, X.; Wang, Y.; Weng, L. Thermally conductive epoxy/boron nitride composites with high glass transition temperatures for thermal interface materials. Mater. Des. 2021, 212, 110190.
6. Liu, Z.; Chen, Y.; Li, Y.; Dai, W.; Yan, Q.; Alam, F. E.; Du, S.; Wang, Z.; Nishimura, K.; Jiang, N. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 2019, 11, 17600-17606.
7. Wang, F.; Drzal, L. T.; Qin, Y.; Huang, Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 2015, 50, 1082-1093.
8. Ren, J.; Li, Q.; Yan, L.; Jia, L.; Huang, X.; Zhao, L.; Ran, Q.; Fu, M. Enhanced thermal conductivity of epoxy composites by introducing graphene@ boron nitride nanosheets hybrid nanoparticles. Mater. Des. 2020, 191, 108663.
9. Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.
10. Rohsenow, W. M.; Hartnett, J. P.; Cho, Y. I. Handbook of heat transfer (Vol. 3). New York: McGraw-Hill 1998.
11. Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of heat and mass transfer, 6th ed. John Wiley & Sons 2007.
12. Jung, H.; Yu, S.; Bae, N. S.; Cho, S. M.; Kim, R. H.; Cho, S. H.; Hwang, I.; Jeong, B.; Ryu, J. S.; Hwang, J. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS Appl. Mater. Interfaces 2015, 7, 15256-15262.
13. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena, 2nd ed. John Wiley & Sons 2006.
14. Li, A.; Zhang, C.; Zhang, Y. F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 2017, 9, 437.
15. Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1-28.
16. Bai, X.; Zhang, C.; Zeng, X.; Ren, L.; Sun, R.; Xu, J. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks. Compos. Commun. 2021, 24, 100650.
17. Wang, Z. L.; Mu, H. T.; Liang, J. G.; Tang, D. W. Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure. Int. J. Therm. Sci. 2013, 74, 53-62.
18. Zhang, H.; Huang, R.; Li, Y.; Li, H.; Wu, Z.; Huang, J.; Yu, B.; Gao, X.; Li, J.; Li, L. Optimization of boron nitride sphere loading in epoxy: enhanced thermal conductivity and excellent electrical insulation. Polymers 2019, 11, 1335.
19. Wang, J.; Suzuki, R.; Ogata, K.; Nakamura, T.; Dong, A.; Weng, W. Near-linear responsive and wide-range pressure and stretch sensor based on hierarchical graphene-based structures via solvent-free preparation. Polymers 2020, 12, 1814.
20. Hu, J.; Huang, Y.; Zeng, X.; Li, Q.; Ren, L.; Sun, R.; Xu, J. B.; Wong, C. P. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 2018, 160, 127−137.
21. Wang, Z. G.; Gong, F.; Yu, W. C.; Huang, Y. F.; Zhu, L.; Lei, J.; Xu, J. Z.; Li, Z. M. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos. Sci. Technol. 2018, 162, 7−13.
22. Khvesyuk, V. I.; Skryabin, A. S. Heat conduction in nanostructures. High. Temp. 2017, 55, 434-456.
23. Chateau, X. Understanding the rheology of concrete, 1st ed. Woodhead Publishing 2012.
24. Wypych, G. Handbook of Fillers 4th Ed. ChemTec Publishing 2016.
25. Moradi, S.; Calventus, Y.; Román, F.; Hutchinson, J.M. Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymers 2019, 11, 1156.
26. Hong, J.P.; Yoon, S.W.; Hwang, T.; Oh, J.S.; Hong, S.C.; Lee, Y.; Nam, J.D. High Thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 2012, 537, 70-75.
27. Konakawa, Y.; Ishizaki, K. The particle size distribution for the highest relative density in a compacted body. Powder Technol. 1990, 63, 241-246.
28. Wie, J.; Kim, J. Thermal properties of binary filler hybrid composite with graphene oxide and pyrolyzed silicon-coated boron nitride. Polymers 2020, 12, 2553.
29. Li, J.; Li, F.; Zhao, X.; Zhang, W.; Li, S.; Lu, Y.; Zhang, L. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2020, 2, 1661–1669.
30. Liu, R.; Zhao, S.; Liu, J. From lithographically patternable to genetically patternable electronic materials for miniaturized, scalable, and soft implantable bioelectronics to interface with nervous and cardiac systems. ACS Appl. Electron. Mater. 2020, In Press, doi:10.1021/acsaelm.0c00753.
31. Pan, C.T.; Wang, S.Y.; Yen, C.K.; Ho, C.K.; Yen, J.F.; Chen, S.W.; Fu, F.R.; Lin, Y.T.; Lin, C.H.; Kumar, A.; et al. Study on delamination between polymer materials and metals in IC packaging process. Polymers 2019, 11, 940.
32. Xu, X.; Chen, J.; Zhou, J.; Li, B. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.
33. Huang, L.; Lv, X.; Tang, Y.; Ge, G.; Zhang, P.; Li, Y. Effect of alumina nanowires on the thermal conductivity and electrical performance of epoxy composites. Polymers 2020, 12, 2126.
34. Cataldi, P.; Steiner, P.; Raine, T.; Lin, K.; Kocabas, C.; Young, R.J.; Bissett, M.; Kinloch, I.A.; Papageorgiou, D.G. Multifunctional biocomposites based on polyhydroxyalkanoate and graphene/carbon nanofiber hybrids for electrical and thermal applications. ACS Appl. Polym. Mater. 2020, 2, 3525–3534.
35. Song, S.H.; Park, K.H.; Kim, B.H.; Choi, Y.W.; Jun, G.H.; Lee, D.J.; Kong, B.S.; Paik, K.W.; Jeon, S. Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 2013, 25, 732–737.
36. Ruhkopf, J.; Sawallich, S.; Nagel, M.; Otto, M.; Plachetka, U.; Kremers, T.; Schnakenberg, U.; Kataria, S.; Lemme, M.C. Role of substrate surface morphology on the performance of graphene inks for flexible electronics. ACS Appl. Electron. Mater. 2019, 1, 1909–1916.
37. Ren, L.; Pashayi, K.; Fard, H.R.; Kotha, S.P.; Borca-Tasciuc, T.; Ozisik, R. Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos. B Eng. 2014, 58, 228–234.
38. Lin, Z.; Liu, Y.; Raghavan, S.; Moon, K.S.; Sitaraman, S.K.; Wong, C.P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.
39. Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M.R. Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide. Compos. B Eng. 2019, 164, 1–9.
40. Wang, Y.; Wu, W.; Drummer, D.; Liu, C.; Tomiak, F.; Schneider, K.; Huang, Z. Achieving a 3D thermally conductive while electrically insulating network in polybenzoxazine with a novel hybrid filler composed of boron nitride and carbon nanotubes. Polymers 2020, 12, 2331.
41. Akhtar, M.W.; Lee, Y.S.; Yoo, D.J.; Kim, J.S. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Compos. B Eng. 2017, 131, 184–195.
42. Yuan, C.; Li, J.; Lindsay, L.; Cherns, D.; Pomeroy, J.W.; Liu, S.; Kuball, M. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2019, 2, 1–8.
43. Moradi, S.; Calventus, Y.; Román, F.; Hutchinson, J.M. Achieving high thermal conductivity in epoxy composites: Effect of boron nitride particle size and matrix-filler interface. Polymers 2019, 11, 1156.
44. Pereira, A.C.; Lima, A.M.; Demosthenes, L.C.C.; Oliveira, M.S.; Costa, U.O.; Bezerra, W.B.A.; Monteiro, S.N.; Rodriguez, R.J.S.; Deus, J.F.; Anacleto Pinheiro, W. Ballistic performance of ramie fabric reinforcing graphene oxide-incorporated epoxy matrix composite. Polymers 2020, 12, 2711.
45. Choi, S.; Kim, J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos. B Eng. 2013, 51, 140–147.
46. Fang, L.; Wu, C.; Qian, R.; Xie, L.; Yang, K.; Jiang, P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Adv. 2014, 4, 21010–21017.
47. Zhang, Y.; Choi, J.R.; Park, S.J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos. Part A Appl. Sci. Manuf. 2017, 101, 227–236.
48. Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. B Eng. 2018, 153, 1–8.
49. Zhang, C.; He, Y.; Zhan, Y.; Zhang, L.; Shi, H.; Xu, Z. Poly (dopamine) assisted epoxy functionalization of hexagonal boron nitride for enhancement of epoxy resin anticorrosion performance. Polym. Adv. Technol. 2017, 28, 214–221.
50. Bian, W.; Yao, T.; Chen, M.; Zhang, C.; Shao, T.; Yang, Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 2018, 168, 420–428.
51. Huang, L.; Zhu, P.; Li, G.; Zhou, F.; Lu, D.; Sun, R.; Wong, C.P. Spherical and flake-like BN filled epoxy composites: Morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J. Mater. Sci. Mater. Electron. 2015, 26, 3564–3572.
52. Zhang, Y.; Gao, W.; Li, Y.; Zhao, D.; Yin, H. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications. RSC Adv. 2019, 9, 7388–7399.
53. Yang, N.; Xu, C.; Hou, J.; Yao, Y.; Zhang, Q.; Grami, M.E.; He, L.; Wang, N.; Qu, X. Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv. 2016, 6, 18279–18287.
54. Zhao, Y.; Zhai, Z.; Drummer, D. Thermal conductivity of aluminosilicate- and aluminum oxide-filled thermosets for injection molding: Effect of filler content, filler size and filler geometry. Polymers 2018, 10, 457.
55. Ma, W.S.; Li, J.; Deng, B.J.; Zhao, X.S. Preparation and characterization of long-chain alkyl silane-functionalized graphene film. J. Mater. Sci. 2013, 48, 156–161.
56. Wan, Y.J.; Gong, L.X.; Tang, L.C.; Wu, L.B.; Jiang, J.X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79–89.
57. Adamczyk, A.; Długoń, E. The FTIR studies of gels and thin films of Al2O3–TiO2 and Al2O3–TiO2–SiO2 systems. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 89, 11–17.
58. Xu, W.; Wang, H.; Xie, F.; Chen, J.; Cao, H.; Xu, J.B. Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 5803–5810.
59. Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of mimusops elengi, linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B 2013, 108, 255–259.
60. Lin, Z.; Mcnamara, A.; Liu, Y.; Moon, K.S.; Wong, C.P. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol. 2014, 90, 123–128.
61. Liang, D.; Ren, P.; Ren, F.; Jin, Y.; Wang, J.; Feng, C.; Duan, Q. Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix. J. Polym. Res. 2020, 27, 1–12.
62. Li, G.; He, Y.; Zhu, P.; Zhao, T.; Sun, R.; Lu, D.; Wong, C.P. Tailored surface chemistry of SiO2 particles with improved rheological, thermal-mechanical and adhesive properties of epoxy based composites for underfill applications. Polymer 2018, 156, 111–120.
63. Chen, C.; Tang, Y.; Ye, Y.S.; Xue, Z.; Xue, Y.; Xie, X.; Mai, Y.W. High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos. Sci. Technol. 2014, 105, 80–85.
64. Zhu, B.L.; Ma, J.; Wu, J.; Yung, K.C.; Xie, C.S. Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles. J. Appl. Polym. Sci. 2010, 118, 2754–2764.
65. Hong, J.P.; Yoon, S.W.; Hwang, T.; Oh, J.S.; Hong, S.C.; Lee, Y.; Nam, J.D. High Thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 2012, 537, 70–75.
66. Chiu, C.W.; Lin, C.A.; Hong, P.D. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J. Polym. Res. 2010, 18, 367–372.
67. Ren, L.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J. 2019, 370, 166–175.
68. Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134.
69. Ren, L.; Li, Q.; Lu, J.; Zeng, X.; Sun, R.; Wu, J.; Xu, J.B.; Wong, C.P. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance. Compos. Part A Appl. Sci. Manuf. 2018, 107, 561–569.
70. Zhang, T.; Sun, J.; Ren, L.; Yao, Y.; Wang, M.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength. Compos. Part A Appl. Sci. Manuf. 2019, 121, 92–99.
71. Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 117, 11–22.
72. Li, T.; Zhang, J.; Wang, H.; Hu, Z.; Yu, Y. High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. ACS Appl. Mater. Interfaces 2013, 5, 8968–8981.
73. Qu, J.; Wong, C.P. Effective elastic modulus of underfill material for flip-chip applications. IEEE Trans. Compon. Packaging Manuf. Technol. 2002, 25, 53–55.
74. Yao, Y.; Lu, G.Q.; Boroyevich, D.; Ngo, K.D. Survey of high-temperature polymeric encapsulants for power electronics packaging. IEEE Trans. Compon. Packaging Manuf. Technol. 2015, 5, 168–181.
75. Mao, D.; Chen, J.; Ren, L.; Zhang, K.; Yuen, M.M.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials. Compos. Part A Appl. Sci. Manuf. 2019, 123, 260–269.
76. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y.W. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 2011, 49, 495–500.
77. Cao, T.; Yuan, L.; Gu, A.; Liang, G. Fabrication and origin of new flame retarding bismaleimide resin system with low dielectric constant and loss based on microencapsulated hexaphenoxycyclotriphosphazene in low phosphorus content. Polym. Degrad. Stab. 2015, 121, 157–170.
78. Ren, L.; Zeng, X.; Zhang, X.; Sun, R.; Tian, X.; Zeng, Y.; Xu, J.B.; Wong, C.P. Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2019, 119, 299–309.
79. Huang, Y.; Schadler, L.S. Understanding the strain-dependent dielectric behavior of carbon black reinforced natural rubber–an interfacial or bulk phenomenon. Compos. Sci. Technol. 2017, 142, 91–97.
80. Li, H.; Liu, F.; Tian, H.; Wang, C.; Guo, Z.; Liu, P.; Wang, Q. Synergetic enhancement of mechanical and electrical strength in epoxy/silica nanocomposites via chemically-bonded interface. Compos. Sci. Technol. 2018, 167, 539–546.
81. Su, L.; Zeng, X.; He, H.; Tao, Q.; Komarneni, S. Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl. Clay Sci. 2017, 148, 103–108.
82. Lee, S.; Kim, J. Incorporating MXene into boron nitride/poly(vinyl alcohol) composite films to enhance thermal and mechanical properties. Polymers 2021, 13, 379.
83. Kim, Y.; Kim, J. Carbonization of polydopamine-coating layers on boron nitride for thermal conductivity enhancement in hybrid polyvinyl alcohol (PVA) composites. Polymers 2020, 12, 1410.
84. Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: a review. Sci. Bull. 2018, 63, 1267−1310.
85. Zhang, X.; Cai, X.; Xie, X.; Pu, C.; Dong, X.; Jiang, Z.; Gao, T.; Ren, Y.; Hu, Jian.; Zhang, X. Anisotropic thermally conductive perfluoroalkoxy composite with low dielectric constant fabricated by aligning boron nitride nanosheets via hot pressing. Polymers 2019, 11, 1638.
86. Wu, Y.; Zhang, X.; Negi, A.; He, J.; Hu, G.; Tian, S.; Liu, J. Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites. Polymers 2020, 12, 426.
87. Blaschke, F.; Marx, P.; Hirner, S.; Mühlbacher, I.; Wewerka, K.; Wiesbrock, F. Dielectric Properties of Shrinkage-Free Poly (2-Oxazoline) Networks from Renewable Resources. Polymers 2021, 13, 1263.
88. Mai, V. D.; Lee, D. I.; Park, J. H.; Lee, D. S. Rheological properties and thermal conductivity of epoxy resins filled with a mixture of alumina and boron nitride. Polymers 2019, 11, 597.
89. Lee Sanchez, W.A.; Huang, C. Y.; Chen, J. X.; Soong, Y. C.; Chan, Y. N.; Chiou, K. C.; Lee, T. M.; Cheng, C. C.; Chiu, C. W. Enhanced thermal conductivity of epoxy composites filled with Al2O3/boron nitride hybrids for underfill encapsulation materials. Polymers 2021, 13, 147.
90. Moradi, S.; Román, F.; Calventus, Y.; Hutchinson, J. M. Densification: A route towards enhanced thermal conductivity of epoxy composites. Polymers 2021, 13, 286.
91. Yang, Y.; Toure, M. K.; Souare, P. M.; Duchesne, E.; Sylvestre, J. Study of underfill corner cracks by the confocal-DIC and phantom-nodes methods. Microelectron. Reliab. 2022, 128, 114431.
92. Lee, C. C. Effect of wafer level underfill on the microbump reliability of ultrathin-chip stacking type 3D-IC assembly during thermal cycling tests. Materials 2017, 10, 1220.
93. Chang, Y. W.; Cheng, Y.; Helfen, L.; Xu, F.; Tian, T.; Scheel, M.; Di Michiel, M.; Chen, C.; Tu, K.N.; Baumbach, T. Electromigration mechanism of failure in flip-chip solder joints based on discrete void formation. Sci. Rep. 2017, 7, 1−16.
94. Ren, L.; Pashayi, K.; Fard, H. R.; Kotha, S. P.; Borca-Tasciuc, T.; Ozisik, R. Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos. B Eng. 2014, 58, 228−234.
95. Dittanet, P.; Pearson, R. A.; Kongkachuichay, P. Thermo-mechanical behaviors and moisture absorption of silica nanoparticle reinforcement in epoxy resins. Int. J. Adhes. Adhes. 2017, 78, 74−82.
96. Salunke, D. R.; Gopalan, V. Thermal and electrical behaviors of boron nitride/epoxy reinforced polymer matrix composite−a review. Polym. Compos. 2021, 42, 1659−1669.
97. Ouyang, Y.; Hou, G.; Bai, L.; Li, B.; Yuan, F. Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Compos. Sci. Technol. 2018, 165, 307-313.
98. Sun, N.; Sun, J.; Zeng, X.; Chen, P.; Qian, J.; Xia, R.; Sun, R. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2018, 110, 45-52.
99. Soong, Y. C.; Chiu, C. W. Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable-cooling smart clothes. J. Colloid Interface Sci. 2021, 599, 611−619.
100. Soong, Y. C.; Li, J. W.; Chen, Y. F.; Chen, J. X.; Lee Sanchez, W.A.; Tsai, W. Y.; Chou, T. Y.; Cheng, C. C.; Chiu, C. W. Polymer-assisted dispersion of boron nitride/graphene in a thermoplastic polyurethane hybrid for cooled smart clothes. ACS Omega 2021, 6, 28779−28787.
101. Samsudin, S. S.; Abdul Majid, M. S.; Mohd Jamir, M. R.; Osman, A. F.; Jaafar, M.; Alshahrani, H. A. Physical, thermal transport, and compressive properties of epoxy composite filled with graphitic-and ceramic-based thermally conductive nanofillers. Polymers 2022, 14, 1014.
102. He, P.; Cao, J.; Ding, H.; Liu, C.; Neilson, J.; Li, Z.; Kinloch, I. A.; Derby, B. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl. Mater. Interfaces 2019, 11, 32225−32234.
103. Zhu, Y.; Cai, H.; Ding, H.; Pan, N.; Wang, X. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195−6200.
104. Agrawal, A.; Satapathy, A. Thermal, mechanical, and dielectric properties of aluminium oxide and solid glass microsphere‐reinforced epoxy composite for electronic packaging application. Polym. Compos. 2019, 40, 2573−2581.
105. Pullanchiyodan, A.; S. Nair, K.; Surendran, K. P. Silver-decorated boron nitride nanosheets as an effective hybrid filler in PMMA for high-thermal-conductivity electronic substrates. ACS Omega 2017, 2, 8825−8835.
106. Cheng, Z.; Koh, Y. R.; Mamun, A.; Shi, J.; Bai, T.; Huynh, K.; Yater, L.; Liu, Z.; Li, R.; Lee, E.; et al. Experimental observation of high intrinsic thermal conductivity of AlN. Phys. Rev. Mater. 2020, 4, 044602.
107. Zhu, Y.; Wei, Z.; Xie, W.; Ge, B.; Zhang, Z.; Yang, W.; Xia, H.; Wang, B.; Jin, H.; Gao, N.; Shi, Z. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos. Sci. Technol. 2020, 199, 108304.
108. Koh, Y. R.; Cheng, Z.; Mamun, A.; Bin Hoque, M. S.; Liu, Z.; Bai, T.; Hussain, K.; Liao, M. E.; Li, R.; Gaskins, J. T.; et al. Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films. ACS Appl. Mater. Interfaces 2020, 12, 29443−29450.
109. Liu, Z.; Li, J.; Liu, X. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503−6515.
110. Zhao, L.; Yan, L.; Wei, C.; Li, Q.; Huang, X.; Wang, Z.; Fu, M.; Ren, J. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J. Phys. Chem. C 2020, 124, 12723−12733.
111. Hung, C. C.; Hurst, J.; Santiago, D.; Lizcano, M.; Kelly, M. Highly thermally conductive hexagonal boron nitride/alumina composite made from commercial hexagonal boron nitride. J. Am. Ceram. Soc. 2017, 100, 515−519.
112. Guerra, V.; Wan, C.; McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Progress in Materials Science 2019, 100, 170−186.
113. Moradi, S.; Calventus, Y.; Román, F.; Hutchinson, J. M. Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymers 2019, 11, 1156.
114. Isarn, I.; Ferrando, F.; Serra, A.; Urbina, C. Novel BN‐epoxy/anhydride composites with enhanced thermal conductivity. Polym. Adv. Technol. 2021, 32, 1485−1492.
115. Singh, A. K.; Panda, B. P.; Mohanty, S.; Nayak, S. K.; Gupta, M. K. Synergistic effect of hybrid graphene and boron nitride on the cure kinetics and thermal conductivity of epoxy adhesives. Polym. Adv. Technol. 2017, 28, 1851−1864.
116. Kim, C. Y.; Dang, T. M. L.; Zhang, Y.; Yang, J. F.; Wang, B. The alignment of AlN platelets in polymer matrix and its anisotropic thermal properties. J. Materiomics 2019, 5, 679−687.
117. Liu, L.; Xiang, D.; Wu, L. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network. Ceram. Int. 2021, 48, 10438−10446.
118. Chiu, C. W.; Lin, C. A.; Hong, P. D. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J. Polym. Res. 2011, 18, 367−372.
119. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. A novel h-BN–RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density. RSC Adv. 2017, 7, 23355−23362.
120. Feng, M.; Pan, Y.; Zhang, M.; Gao, Q.; Liu, C.; Shen, C.; Liu, X. Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Compos. Sci. Technol. 2021, 206, 108666.
121. Liu, M.; Chiang, S. W.; Chu, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H. Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram. Int. 2020, 46, 20810−20818.
122. Akhtar, M. W.; Lee, Y. S.; Yoo, D. J.; Kim, J. S. Alumina-graphene hybrid filled epoxy composite: quantitative validation and enhanced thermal conductivity. Compos. B Eng. 2017, 131, 184−195.
123. Yan, R.; Su, F.; Zhang, L.; Li, C. Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105496.
124. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. Boron nitride@ graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Adv. 2016, 6, 35847−35854.
125. Jiang, Y.; Shi, X.; Feng, Y.; Li, S.; Zhou, X.; Xie, X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos. Part A Appl. Sci. Manuf. 2018, 107, 657−664.
126. Qiao, X.; Kong, X.; Wang, L. Thermal performance analysis of a thermal enhanced form-stable composite phase change material with aluminum nitride. Appl. Therm. Eng. 2021, 187, 116581.
127. Yıldız, G.; Akkoyun, M. Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer composites. J. Appl. Polym. Sci. 2021, 138, 50516.
128. Dai, C.; Chen, X.; Jiang, T.; Paramane, A.; Tanaka, Y. Improvement of electrical and material properties of epoxy resin/aluminum nitride nanocomposites for packaging materials. Polym. Test. 2020, 86, 106502.
129. Shi, H.; Liu, W.; Liu, C.; Yang, M.; Xie, Y.; Wang, S.; Zhang, F.; Liang, L.; Pi, K. Polyethylenimine-assisted exfoliation of h-BN in aqueous media for anticorrosive reinforcement of waterborne epoxy coating. Prog. Org. Coat. 2020, 142, 105591.
130. Chen, X.; Lim, J. S. K.; Yan, W.; Guo, F.; Liang, Y. N.; Chen, H.; Lambourne, A.; Hu, X. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987−16996.
131. Mostovoy, A. S.; Vikulova, M. A.; Lopukhova, M. I. Reinforcing effects of aminosilane-functionalized h-BN on the physicochemical and mechanical behaviors of epoxy nanocomposites. Sci. Rep. 2020, 10, 1−11.
132. Zhang, Y.; Gao, W.; Li, Y.; Zhao, D.; Yin, H. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications. RSC Adv. 2019, 9, 7388−7399.
133. Wan, Y. J.; Gong, L. X.; Tang, L. C.; Wu, L. B.; Jiang, J. X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79−89.
134. Arslan, C.; Dogan, M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly (butylene terephthalate) composites. Compos. B Eng. 2018, 146, 145−154.
135. Wie, J.; Kim, M.; Kim, J. Enhanced thermal conductivity of a polysilazane-coated A-BN/epoxy composite following surface treatment with silane coupling agents. Appl. Surf. Sci. 2020, 529, 147091.
136. Naguib, H.M.; Ahmed, M.A.; Abo-Shanab, Z.L. Silane coupling agent for enhanced epoxy-iron oxide nanocomposite. J. Mater. Res. Technol. 2018, 7, 21−28.
137. Isarn, I.; Massagués, L.; Ramis, X.; Serra, À.; Ferrando, F. New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2017, 103, 35−47.
138. Liu, Z.; Li, J.; Zhou, C.; Zhu, W. A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites. Int. J. Heat Mass Transf. 2018, 126, 353−362.
139. Chen, C.; Xue, Y.; Li, X.; Wen, Y.; Liu, J.; Xue, Z.; Shi, D.; Zhou, X.; Xie, X.; Mai, Y. W. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos. Part A Appl. Sci. Manuf. 2019, 118, 67−74.
140. Yeo, H.; Islam, A. M.; You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol. 2017, 141, 99−105.
141. Ren, L.; Li, Q.; Lu, J.; Zeng, X.; Sun, R.; Wu, J.; Xu, J. B.; Wong, C. P. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance. Compos. Part A Appl. Sci. Manuf. 2018, 107, 561−569.
142. Bian, W.; Yao, T.; Chen, M.; Zhang, C.; Shao, T.; Yang, Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 2018, 168, 420−428.
143. Kim, Y. K.; Chung, J. Y.; Lee, J. G.; Baek, Y. K.; Shin, P. W. Synergistic effect of spherical Al2O3 particles and BN nanoplates on the thermal transport properties of polymer composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 184−191.
144. Sato, K.; Ijuin, A.; Hotta, Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram. Int. 2015, 41, 10314−10318.
145. Hu, J.; Huang, Y.; Zeng, X.; Li, Q.; Ren, L.; Sun, R.; Xu, J. B.; Wong, C. P. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 2018, 160, 127−137.
146. Lee, J.; Kim, J. Improved through-plane thermal conductivity of 3D structured composites via BN alignment and AlN surface modification. Compos. Commun. 2021, 28, 100935.
147. Lee, W.; Kim, J. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride. Compos. Sci. Technol. 2020, 200, 108424.
148. Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. B Eng. 2018, 153, 1−8.
149. Wang, Z. G.; Gong, F.; Yu, W. C.; Huang, Y. F.; Zhu, L.; Lei, J.; Xu, J. Z.; Li, Z. M. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos. Sci. Technol. 2018, 162, 7−13.
150. Agrawal, A.; Satapathy, A. Thermal, mechanical, and dielectric properties of aluminium oxide and solid glass microsphere‐reinforced epoxy composite for electronic packaging application. Polym. Compos. 2019, 40, 2573−2581.
151. Li, T.; Zhang, J.; Wang, H.; Hu, Z.; Yu, Y. High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. ACS Appl. Mater. Interfaces 2013, 5, 8968−8981.
152. Sun, Y.; Zhang, Z.; Wong, C. P. Study and characterization on the nanocomposite underfill for flip chip applications. IEEE Trans. Compon. Packaging Technol. 2006, 29, 190−197.
153. Liu, Z.; Li, J.; Liu, X. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503−6515.
154. Nayak, S. K.; Mohanty, S.; Nayak, S. K. Thermal, electrical and mechanical properties of expanded graphite and micro-SiC filled hybrid epoxy composite for electronic packaging applications. J. Electron. Mater. 2020, 49, 212−225.
155. Chi, Q.; Wu, J.; Tang, C.; Zhang, C.; Li, H.; Zhang, Y.; Feng, Y.; Zhang, T. Thermal and electrical properties of epoxy composites filled with 3D h‐BN/TOCNF fillers. Macromol. Mater. Eng. 2022, 307, 2100734.
156. Zhu, B. L.; Ma, J.; Wu, J.; Yung, K. C.; Xie, C. S. Study on the properties of the epoxy‐matrix composites filled with thermally conductive AlN and BN ceramic particles. J. Appl. Polym. Sci. 2010, 118, 2754−2764.
157. Permal, A.; Devarajan, M.; Huong, L. H.; Zahner, T.; Lacey, D.; Ibrahim, K. Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride. Polym. Compos. 2018, 39, E1372−E1380.
158. Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5−10.
159. Pullanchiyodan, A.; S. Nair, K.; Surendran, K. P. Silver-decorated boron nitride nanosheets as an effective hybrid filler in PMMA for high-thermal-conductivity electronic substrates. ACS Omega 2017, 2, 8825−8835.
160. Weng, L.; Wang, H.; Zhang, X.; Liu, L.; Zhang, H. Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation. J. Mater. Sci.: Mater. Electron. 2018, 29, 14267−14276.
161. Yao, T.; Chen, K.; Shao, T.; Zhang, C.; Zhang, C.; Yang, Y. Nano-BN encapsulated micro-AlN as fillers for epoxy composites with high thermal conductivity and sufficient dielectric breakdown strength. IEEE Trns. Dielectr. Electr. Insul. 2020, 27, 528-534.
162. Hou, J.; Li, G.; Yang, N.; Qin, L.; Grami, M. E.; Zhang, Q.; Wang, N.; Qu, X. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282-44290.
163. Wang, Z.; Meng, G.; Wang, L.; Tian, L.; Chen, S.; Wu, G.; Kong, B.; Cheng, Y. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 2021, 11, 1−11.
164. Li, J.; Li, S. Thermal and dielectric properties of epoxy resin filled with double-layer surface-modified boron nitride nanosheets. Mater. Chem. Phys. 2021, 274, 125151.
165. Ren, L.; Zeng, X.; Zhang, X.; Sun, R.; Tian, X.; Zeng, Y.; Xu, J. B.; Wong, C. P. Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2019, 119, 299−309.
166. Huang, Y.; Schadler, L. S. Understanding the strain-dependent dielectric behavior of carbon black reinforced natural rubber–an interfacial or bulk phenomenon? Compos. Sci. Technol. 2017, 142, 91−97.
167. Fang, H.; Bai, S. L.; Wong, C. P. Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos. Part A Appl. Sci. Manuf. 2017, 100, 71−80.

QR CODE