簡易檢索 / 詳目顯示

研究生: 陳品嫻
Pin-sian Chen
論文名稱: 具噻吩并吡之染料敏化太陽能電池染料合成與研究
Synthesis and Study of Thieno[3,4-b]pyrazine Based Dyes for Dye Sensitized Solar Cells
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 張家耀
Jia-Yaw Chang
戴 龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 165
中文關鍵詞: 染料敏化太陽能電池
外文關鍵詞: thieno[3 4-b]pyrazine, Dye-Sentized Solar Cells
相關次數: 點閱:214下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文合成出一系列具有噻吩并[3,4-b]吡的有機敏化染料,以加入中間拉電子基噻吩并[3,4-b]吡 於D-A-π-A系統取代傳統的D-π-A系統,目的是增加分子內電子從推電子基到拉電子基及錨基上,調控更好的電子能階,使得分子最大吸收波長能夠到紅外光區(620 -740 nm)而六種有機染料是利用Suzuki coupling、Stilling coupling和Knoevenagel reaction方法合成,以三苯胺作為推電子基、噻吩并[3,4-b]吡為中間拉電子基、不同π共軛橋基與Cyanoacrylic acid為拉電子基,並以核磁共振光譜譜(NMR)以及質譜儀(MASS)鑑定結構。利用紫外/可見光光譜儀與循環電位儀去探討六種染料的光電性質。


In this research, a series of organic sensitizers based on thieno[3,4-b]pyraizne has been synthesized for dye-sensitized solar cells (DSSCs). We have used thieno[3,4-b]pyrazine as the additional acceptor in the D-A-π-A system, instead of a D-π-A system. This D-A-π-A system, results in the increase of the maximum absorption band to red light region (620 – 740 nm) due to increasing electron density from donor to acceptor and has better regulation of the electronic energy levels. Six organic dyes synthesized with Suzuki coupling, Stilling coupling and Knoevenagel reaction contain triphenylamine as donor, heteroaryl group as π bridge, thieno[3,4-b]pyraizne and cyanoacrylic acid as acceptors. Use nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MASS) to identify the structures and use UV / visible spectroscopy and cyclic potential instrument to discuss the photophyscial and electrochemical properties.

第一章 緒論 1 1-1 前言 1 1-2 太陽能電池簡介 1 1-3 染料敏化太陽能電池的發展 3 1-4 染料敏化太陽能電池結構及工作原理 3 1-5 影響染料敏化太陽能電池的效率 5 1-6 染料光敏化劑 5 1-6-1 釕金屬錯合物染料 7 1-6-2 非有機金屬染料 9 1-6-3 Triphenylamine染料 11 1-7 染料敏化劑的設計 13 1-8 研究動機與目的 18 第二章 結果與討論 20 2-1 化合物之合成與討論 20 2-2 化合物於溶液中之光物理研究 24 2-3 莫耳吸收係數 30 2-4 光學性質討 34 2-5 電化學性質探討 36 2-6 化合物的理論計算結果探討 43 2-7 化合物的理論與實驗結果討論 48 2-8 元件效率 49 第三章 結論 51 3-1 結論 51 3-2 未來展望 52 第四章 實驗部份 53 4-1 實驗儀器 53 4-2 實驗藥品與溶劑 54 4-3 吸收度量測方法 56 4-4 莫耳吸收係數量測方法 57 4-5 實驗步驟 58 第五章 參考文獻 80

1. Gratzel, M. Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051.
3. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
4. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
5. Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl. Phys. Lett. 2014, 104 (6), 063901-063904.
6. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136 (2), 622-625.
7. You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano 2014, 8 (2), 1674-1680.
8. Moser, J. Notiz uber Verstarkung photoelektrischer Strome durch optische Sensibilisirung. Monatsh. Chem. 1887, 8 (1), 373-373.
9. Hurd, F.; Livingston, R. The Quantum Yields of Some Dye-sensitized Photooxidations. J. Phys. Chem. 1940, 44 (7), 865-873.
10. Gerischer, H.; Michel-Beyerle, M. E.; Rebentrost, F.; Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 1968, 13 (6), 1509-1515.
11. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261 (5559), 402-403.
12. Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Dye Sensitization and Surface Structures of Semiconductor Electrodes. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19 (3), 415-421.
13. O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
14. 童永樑. 釕金屬染料在染料敏化太陽電池的演進. 工業材料雜誌 2008, 255, 109-123.
15. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6663.
16. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.
17. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M. A swift dye uptake procedure for dye sensitized solar cells. Chem.Commum. 2003, (12), 1456-1457.
18. Gratzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 2004, 164 (1-3), 3-14.
19. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Gratzel, M. Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells. Adv. Mater. 2003, 15 (24), 2101-2104.
20. Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Gratzel, M. Femtosecond Electron-Transfer Dynamics at a Sensitizing Dye−Semiconductor (TiO2) Interface. J. Phys. Chem. 1996, 100 (23), 9577-9578.
21. Hara, K.; Sayama, K.; Arakawa, H.; Ohga, Y.; Shinpo, A.; Suga, S. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun. 2001, (6), 569-570.
22. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 2003, 27 (5), 783-785.
23. Wang, Z. S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. Photophysical and (photo)electrochemical properties of a coumarin dye. J. Phys. Chem. B 2005, 109 (9), 3907-3914.
24. Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. J. Phys. Chem. C 2007, 111 (19), 7224-7230.
25. Horiuchi, T.; Miura, H.; Uchida, S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun. 2003, (24), 3036-3037.
26. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126 (39), 12218-12219.
27. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 2008, (41), 5194-5196.
28. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Phenyl-Conjugated Oligoene Sensitizers for TiO2Solar Cells. Chem. Mater. 2004, 16 (9), 1806-1812.
29. Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sun, L. Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. J. Phys. Chem. C 2008, 112 (29), 11023-11033.
30. Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem. Commun. 2006, (21), 2245-2247.
31. Teng, C.; Yang, X.; Yang, C.; Tian, H.; Li, S.; Wang, X.; Hagfeldt, A.; Sun, L. Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114 (25), 11305-11313.
32. Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; Sun, L. Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114 (19), 9101-9110.
33. Li, R.; Liu, J.; Cai, N.; Zhang, M.; Wang, P. Synchronously reduced surface states, charge recombination, and light absorption length for high-performance organic dye-sensitized solar cells. J. Phys. Chem. B 2010, 114 (13), 4461-4464.
34. Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Gratzel, M.; Nazeeruddin, M. K. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J. Am. Chem. Soc. 2008, 130 (19), 6259-6266.
35. Wu, Y.; Zhu, W. Organic sensitizers from D-pi-A to D-A-pi-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 2013, 42 (5), 2039-2058.
36. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-s.; Tian, H. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2011, 21 (4), 756-763.
37. Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu, W. Constructing organic D-A-pi-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment. Chem. Eur. J. 2012, 18 (26), 8190-8200.
38. Cui, Y.; Wu, Y.; Lu, X.; Zhang, X.; Zhou, G.; Miapeh, F. B.; Zhu, W.; Wang, Z.-S. Incorporating Benzotriazole Moiety to Construct D–A−π–A Organic Sensitizers for Solar Cells: Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chem. Mater. 2011, 23 (19), 4394-4401.
39. Kastner, J.; Kuzmany, H.; Vegh, D.; Landl, M.; Cuff, L.; Kertesz, M. Raman Spectra of Poly(2,3-R,R-thieno[3,4-b]pyrazine). A New Low-Band-Gap Polymer. Macromolecules 1995, 28 (8), 2922-2929.
40. Pomerantz, M.; Chaloner-Gill, B.; Harding, L. O.; Tseng, J. J.; Pomerantz, W. J. Poly(2,3-dihexylthieno[3,4-b]pyrazine). A new processable low band-gap polyheterocycle. J. Chem. Soc., Chem. Commun. 1992, (22), 1672-1673.
41. Lu, X.; Zhou, G.; Wang, H.; Feng, Q.; Wang, Z. S. Near infrared thieno[3,4-b]pyrazine sensitizers for efficient quasi-solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14 (14), 4802-4809.
42. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J. Org. Chem. 2007, 72 (25), 9550-9556.
43. Chang, Y. J.; Chow, T. J. Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 2009, 65 (24), 4726-4734.
44. Goldberg, Y.; Alper, H. Biphasic electrophilic halogenation of activated aromatics and heteroaromatics with N-halosuccinimides catalyzed by perchloric acid. J. Org. Chem. 1993, 58 (11), 3072-3075.
45. Sahu, D.; Padhy, H.; Patra, D.; Kekuda, D.; Chu, C.-W.; Chiang, I. H.; Lin, H.-C. Synthesis and application of H-Bonded cross-linking polymers containing a conjugated pyridyl H-Acceptor side-chain polymer and various carbazole-based H-Donor dyes bearing symmetrical cyanoacrylic acids for organic solar cells. Polymer 2010, 51 (26), 6182-6192.
46. Kim, D. S.; Ahn, K. H. Fluorescence "turn-on" sensing of carboxylate anions with oligothiophene-based o-(carboxamido)trifluoroacetophenones. J. Org. Chem. 2008, 73 (17), 6831-6834.

QR CODE