簡易檢索 / 詳目顯示

研究生: 唐建翔
Chien-Hsiang Tang
論文名稱: 雙糖分子對於非病毒載體的基因轉染表現之影響
Effects of Disaccharides on the Transgene Expression Mediated by Non-viral Vectors
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 方翠筠
Tsuei-Yun Fang
曹 恒 光
none
孫幸宜
none
朱義旭
Yi-Hsu Ju
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 基因治療雙糖轉染聚乙稀亞胺微脂粒
外文關鍵詞: gene therapy, disaccharides, transfection, PEI
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

非病毒載體大約可分為兩大類:微脂粒載體與高分子載體系統。先前許多的研究都致力於提昇非病毒載體之轉染效率,最常被使用的方式大多是利用化學反應對載體進行修飾。在本研究中,我們利用輔助劑以提昇非病毒載體之轉染效率,這個方式可以有效避免因化學反應所產生的載體純化與定性等問題。
我們使用不同雙醣分子與聚乙稀亞胺、或是不同的微脂粒載體系統混合,以探討其對於轉染與質體核酸傳遞效率之影響。利用質體核酸進入細胞後產生的綠色螢光蛋白質表現,與使用ethidium monoazide(EMA)螢光標記後的質體核酸於細胞內之螢光強度,分別表示為轉染效率與質體核酸傳遞效率。
研究發現,當聚乙稀亞胺/質體核酸複合物與海藻醣混合後,可以有效提昇轉染效率。然而當海藻醣以其他種類的雙醣分子替換後,便不具有提昇轉染效率的效果。利用海藻醣於轉染前5-120分鐘對動物細胞進行培養,轉染效率會降低30-50%,但是卻不會對質體核酸的傳遞效率造成影響。這表示轉染效率的降低並非由於胞飲作用的活性被抑制所致。在轉染完成後以海藻醣對動物細胞進行培養,結果發現對轉染效率並無影響。這表示海藻醣的存在並不影響細胞內蛋白質合成的機制。實驗也發現,海藻醣於轉染時存在會抑制質體核酸傳遞進入細胞的效率。此外,海藻醣於轉染時的存在時間多寡,也會影響轉染效率的提昇幅度。
對於微脂粒載體系統,實驗結果也發現纖維雙醣對實驗中所有的微脂粒載體都具有提昇轉染效率的作用,而麥芽醣則會抑制DOTAP/Cholesterol與LPD的質體核酸複合物之轉染效率。對質體核酸於動物細胞之傳遞效率的結果分析,發現大多數實驗所使用的雙醣分子,都能提昇DOTAP,DOTAP/Cholesterol與DOTAP/DOPE與質體核酸複合物的傳遞效率,但對於DC-Chol/DOPE與質體核酸複合物卻會產生抑制傳遞效率的效果。大體而言,轉染效率與傳遞效率間,呈現出相對的關係。
我們發現,使用海藻醣與纖維雙醣能有效提昇微脂粒載體的轉染效率。此外,當海藻醣與聚乙稀亞胺/質體核酸複合物共同存在時,才能提昇複合物之轉染效率。這或許是由於海藻醣會影響聚乙稀亞胺/質體核酸複合物在細胞中的傳遞過程與機制所引起。


Nonviral vectors mainly consist of two major classes: lipid-based and polymer-based gene delivery systems. Different strategies have been adopted to enhance the levels of transgene expression mediated by nonviral vectors. A most commonly used approach is to modify the carriers through chemical reactions. In this study, we using enhancers to improve the transfection efficiency of nonviral vectors can circumvent the needs of chemical modifications as well as subsequent purification and characterization of nonviral vectors.
In this study, different disaccharides were incorporated into the vectors prepared with DNA/polyethylenimine(PEI), DOTAP/protamine/DNA (LPD) or DNA/cationic liposomes containing DOTAP, DOTAP/Chol, DOTAP/DOPE, or DC-Chol/DOPE. The levels of transgene expression and internalized plasmid of CHO cells were represented by the percentages of GFP-positive cells and the fluorescence intensity of ethidium-monoazide(EMA) covalently labeled plasmid, respectively.
We found that incorporating trehalose into the transfection reagents could improve the transgene expression mediated by DNA-PEI complexes. Such enhancements were not observed when trehalose was replaced by other disaccharides. Treatments with trehalose for 5-120 min prior to transfection could cause drops in transfection efficiency by 30-50%; such treatments, however, hardly affected the amounts of intra- cellular plasmid, indicating that the preexistence of intracellular trehalose could reduce transfection efficiency without lowering the endocytic activity. The transfection efficiency remained almost unchanged when the transfected cells were treated with trehalose after the removal of transfection reagents, indicating that trehalose had minimal effects on the machinery of protein synthesis. The presence of trehalose during transfection showed inhibitory effects on the internalization of DNA-PEI complexes. Additionally, the extent of enhancement in transgene expression strongly depended on the duration of trehalose.
For the lipid-based delivery system, cellobiose was found to be effective for all the lipid vectors whereas maltose decreased the effectiveness of DOTAP/Chol liposomes and LPD. For the internalization of plasmid, most disaccharides were able to increase the cellular delivery of DOTAP, DOTAP/Chol, and DOTAP/DOPE liposomes, but caused decreases in the cellular entry of DC-Chol/DOPE liposomes. An approximately linear correlation between the internalized plasmid and the transgene expression was observed for all the treatments in this study.
In conclusion, we showed that using trehalose and cellobiose with a lipid-based delivery system provides a straightforward approach to effectively enhance transgene expression. Besides, only during the transfection process when DNA-PEI complexes and trehalose coexisted, trehalose became an effective enhancer of transgene expression mediated by DNA-PEI complexes possibly by affecting the mechanisms of intra- cellular trafficking.

中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅵ 目錄 Ⅶ 圖表目錄 Ⅹ 一、緒論 1 1.1 前言 1 1.1.1 何謂基因治療 1 1.1.2 載體系統-病毒型載體 2 1.1.3 載體系統-非病毒型載體 3 1.2 文獻回顧 4 1.2.1 基因傳遞之機制 4 1.2.2 高分子載體 6 1.2.2.1 最常用的高分子載體-聚乙稀亞胺 7 1.2.2.2 低毒性的高分子載體-共聚合物高分子 8 1.2.2.3 低毒性的高分子載體-天然高分子 10 1.2.3 脂質載體-微脂粒 11 1.2.3.1 微脂粒基本組成 11 1.2.3.2 微脂粒之化學修飾 13 1.2.3.3 降低微脂粒載體毒性之研究 14 1.2.4 微脂粒-高分子混合載體與裸質體核酸 15 1.2.4.1 微脂粒-高分子混合載體 15 1.2.4.2 裸質體核酸 16 1.3 研究目的與未來展望 19 二、實驗藥品、儀器與步驟 24 2.1 實驗藥品 24 2.2 實驗儀器 26 2.3 實驗步驟 27 2.3.1 質體核酸 pEGFP-C1與 gWiz-luciferase 之製備 29 2.3.2 螢光標記質體核酸 31 2.3.3 雙醣分子溶液之製備 32 2.3.4 動物細胞轉染 32 2.3.4.1 動物細胞培養 33 2.3.4.2 質體核酸-微脂粒複合物對動物細胞進行轉染 33 2.3.4.3 聚乙稀亞胺-高分子複合物對動物細胞進行轉染 35 2.3.4.4 細胞固定化 35 2.3.5 分析質體核酸之傳遞與綠色螢光蛋白質之表現效率 36 2.3.6 分析冷光蛋白質(luciferase)之表現效率 38 2.3.7 細胞毒性測量 39 2.3.8 複合物之粒徑分析 39 2.3.9 複合物穩定性之螢光分析 40 三、結果與討論 41 3.1 雙醣分子輔助劑對於聚乙烯亞胺載體之影響探討 41 3.1.1 海藻醣具有提昇聚乙烯亞胺載體之轉染效率的作用 41 3.1.2 含有海藻醣輔助劑之DMEM培養基可以提昇細胞存活率 43 3.1.3 海藻醣存在時間點與存在時間長短會影響轉染效率 44 3.1.4 海藻醣會影響質體核酸-聚乙烯亞胺間之作用 46 3.1.5 雙醣分子會抑制質體核酸-聚乙稀亞胺複合物進入細胞 47 3.1.6 海藻醣對於其他細胞株也有提升轉染效率的作用 50 3.2 雙醣分子輔助劑對於微脂粒載體之影響探討 51 3.2.1 雙醣分子輔助劑對於微脂粒之轉染效率的探討 53 3.2.2 雙醣分子對不同微脂粒於質體核酸傳遞效率的影響 58 3.2.3 轉染效率與質體核酸傳遞效率間之比較 55 3.2.4 雙醣分子輔助劑有助於降低因轉染引起的細胞毒性 56 3.2.5 雙醣分子輔助劑有助於穩定載體 57 四、結論 59 五、參考文獻 61 圖表目錄 圖 1、基因傳遞機制簡圖(以微脂粒載體為例) 4 圖 2、聚乙稀亞胺簡圖 7 圖 3、DOTMA與DC-Chol簡圖 12 圖 4、雙醣結構圖 23 圖 5、DOTAP、Cholesterol與DOPE結構 29 圖 6、質體核酸pEGFP-C1與gWiz-luciferase簡圖 30 圖 7、EMA之分子構造 32 圖 8、流式細胞儀之原理簡圖 37 圖 9、冷光產生原理 38 圖10、雙醣分子輔助劑對於聚乙烯亞胺載體之影響 70 圖11、Trehalose輔助劑於180mM濃度下,在不同N/P值時,對於聚 乙烯亞胺載體對CHO細胞株轉染之影響 71 圖12、以聚乙稀亞胺為載體時,trehalose對轉染時細胞毒性的影響 72 圖13、以聚乙稀亞胺為載體時,轉染前後分別以trehalose/DMEM對 細胞進行培養,對轉染效率之影響 73 圖14、於不同時間點下加入trehalose輔助劑,對以聚乙稀亞胺為 載體時轉染效率的影響 74 圖15、雙醣分子對於質體核酸/聚乙稀亞胺複合物之穩定度影響 75 圖16、雙醣分子對以聚乙稀亞胺為載體之質體核酸傳遞效率的影響 76 圖17、轉染前以trehalose/DMEM進行培養,對以聚乙稀亞胺為載體 時質體核酸傳遞效率的影響 77 圖18、用trehalose輔助劑對質體核酸/聚乙稀亞胺複合物於不同細 胞株的轉染效率比較 78 圖19、以DOTAP為載體時,不同雙醣分子對轉染效率的影響 79 圖20、雙醣分子在120mM濃度下,對不同組成之微脂粒的轉染效率 之影響 80 圖21、以不同組成之微脂粒當載體,不同雙醣分子對質體核酸之傳遞 效率比較 81 圖22、利用微脂粒為載體對質體核酸進行傳遞,其GFP蛋白質表現量 與質體核酸的傳遞效率的結果比較 82 圖23、雙醣分子對不同微脂粒載體於進行轉染後之毒性影響分析 83 圖24、雙醣分子對微脂粒複合物穩定性之影響 84 表 1、Trehalose輔助劑對於聚乙烯亞胺載體進行轉染時之影響 85

1. Blaese RM, C.K., Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF., T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science, 1995. 270(5235): p. 475-480.
2. G J Nabel, E.G.N., Z Y Yang, B A Fox, G E Plautz, X Gao, L Huang, S Shu, D Gordon, and A E Chang, Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(23): p. 11307-11311.
3. Porteous DJ, D.J., McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ, Carothers AD, Wallace WA, Moralee S, Hoenes C, Kallmeyer G, Michaelis U, Naujoks K, Ho LP, Samways JM, Imrie M, Greening AP, Innes JA., Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene therapy, 1997. 4(3): p. 210-218.
4. Gill DR, S.K., Mofford KA, Seddon T, Huang L, Sorgi F, Thomson A, MacVinish LJ, Ratcliff R, Bilton D, Lane DJ, Littlewood JM, Webb AK, Middleton PG, Colledge WH, Cuthbert AW, Evans MJ, Higgins CF, Hyde SC., A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene therapy, 1997. 4(3): p. 199-209.
5. http://www.abedia.com/wiley/vectors.php.
6. Godbey WT, W.K., Mikos AG., Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(9): p. 5177-5181.
7. Mislick KA, B.J., Evidence for the role of proteoglycans in cation-mediated gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(22): p. 12349.
8. Belting M, P.P., Protective role for proteoglycans against cationic lipid cytotoxicity allowing optimal transfection efficiency in vitro. The Biochemical journal, 1999. 342(pt 2): p. 281-286.
9. Coonrod A, L.F., Horwitz M., On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene therapy, 1997. 4(12): p. 1313-1321.
10. Zhou X, H.L., DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochimica et biophysica acta, 1994. 1189(2): p. 195-203.
11. Boussif O, L.h.F., Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(16): p. 7297-7301.
12. Wattiaux R, L.N., Wattiaux-De Coninck S, Jadot M., Endosomes, lysosomes: their implication in gene transfer. Advanced drug delivery reviews, 2000. 41(2): p. 201-208.
13. Liu F, H.L., Development of non-viral vectors for systemic gene delivery. Journal of controlled release, 2002. 78(1-3): p. 259-266.
14. Hagstrom JE, L.J., Bassik MC, Sebestyén MG, Adam SA, Wolff JA., Nuclear import of DNA in digitonin-permeabilized cells. Journal of cell science, 1997. 110(pt 18): p. 2323-2331.
15. Luby-Phelps K, C.P., Taylor DL, Lanni F., Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(14): p. 4910-4913.
16. Godbey WT, W.K., Mikos AG., Poly(ethylenimine) and its role in gene delivery Journal of controlled release, 1999. 60(2-3): p. 149-160.
17. Dunlap DD, M.A., Soria MR, Monaco L., Nanoscopic structure of DNA condensed for gene delivery. Nucleic acids research, 1997. 25(15): p. 3095-3101.
18. Kircheis R, W.L., Wagner E., Design and gene delivery activity of modified polyethylenimines. Advanced drug delivery reviews, 2001. 53(3): p. 341-358.
19. Ahn CH, C.S., Bae YH, Kim SW., Synthesis of biodegradable multi-block copolymers of poly(L-lysine) and poly(ethylene glycol) as a non-viral gene carrier. Journal of controlled release 2004. 97(3): p. 567-574.
20. Fischer D, B.T., Li Y, Elsässer HP, Kissel T., A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical research, 1999. 16(8): p. 1273-1279.
21. Krämer M, S.J., Grimm G, Kaufmann B, Krüger U, Weber M, Haag R., Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chembiochem 2004. 5(8): p. 1081-1087.
22. Wadhwa MS, C.W., Adami RC, McKenzie DL, Rice KG., Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjugate chemistry, 1997. 8(1): p. 81-88.
23. Plank C, M.K., Szoka FC Jr, Wagner E., Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Human gene therapy, 1996. 7(12): p. 1437-1446.
24. Boussif O, Z.M., Behr JP., Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene therapy, 1996. 3(12): p. 1074-1080.
25. Hong JW, P.J., Huh KM, Chung H, Kwon IC, Jeong SY., PEGylated polyethylenimine for in vivo local gene delivery based on lipiodolized emulsion system. Journal of controlled release, 2004. 99(1): p. 167-176.
26. Toncheva V, W.M., Dash PR, Oupicky D, Ulbrich K, Seymour LW, Schacht EH., Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochimica et biophysica acta, 1998. 1380(3): p. 354-368.
27. Choi YH, L.F., Park JS, Kim SW., Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-tapgeted gene carrier. Bioconjugate chemistry, 1998. 9(6): p. 708-718.
28. Benns JM, M.R., Kim SW., Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. Journal of controlled release, 2002. 79(1-3): p. 255-269.
29. Furgeson DY, C.W., Yockman JW, Kim SW., Modified linear polyethylenimine-cholesterol conjugates for DNA complexation. Bioconjugate chemistry, 2003. 14: p. 840-847.
30. Furgeson DY, C.R., Mahato RI, Kim SW., Novel water insoluble lipoparticulates for gene delivery. Pharmaceutical research, 2002. 19(4): p. 382-390.
31. Brownlie A, U.I., Schätzlein AG., PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. International journal of pharmaceutics, 2004. 274(1-2): p. 41-52.
32. Tseng WC, T.C., Fang TY., The role of dextran conjugation in transfection mediated by dextran-grafted polyethylenimine. The journal of gene medicine, 2004. 6(8): p. 895-905.
33. Erbacher P, B.T., Belguise-Valladier P, Zou S, Coll JL, Behr JP, Remy JS., Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). The journal of gene medicine, 1999. 1(3): p. 210-222.
34. Tseng WC, J.C., Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules, 2003. 4(5): p. 1277-1284.
35. A., K., Gene transfer with modified polyethylenimines. The journal of gene medicine, 2004. 6(Suppl 1): p. S3-S10.
36. Patrick Midoux, M.M., Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes. Bioconjugate chemistry, 1999. 10(3): p. 406-411.
37. Mini Thomas, A.M.K., Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(23): p. 14640-14645.
38. Li Z, H.L., Sustained delivery and expression of plasmid DNA based on biodegradable polyester, poly(D,L-lactide-co-4-hydroxy-L-proline). Journal of controlled release, 2004. 98(3): p. 437-446.
39. Anderson DG, L.D., Langer R., Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angewandte Chemie 2003. 42(27): p. 3153-3158.
40. Lim YB, H.S., Kong HU, Lee Y, Park JS, Jeong B, Kim SW., Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharmaceutical research, 2000. 17(7): p. 811-816.
41. Lim YB, K.S., Suh H, Park JS., Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjugate chemistry, 2002. 13(5): p. 952-957.
42. Miyata K, K.Y., Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K., Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. Journal of the American Chemical Society, 2004. 126(8): p. 2355-2361.
43. Kabanov AV, B.E., Alakhov VY., Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of controlled release, 2002. 82: p. 189-212.
44. P Lemieux, N.G.r., G Paradis, R Proulx, L Chistyakova, A Kabanov and V Alakhov, A combination of poloxamers increases gene
expression of plasmid DNA in skeletal muscle. Gene therapy, 2000. 7: p. 986-991.
45. Simões S, S.V., Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N., Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. Biochimica et biophysica acta, 2000. 1463(2): p. 459-469.
46. Brzoska M, L.K., Coester C, Loitsch S, Wagner TO, Mallinckrodt C., Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochemical and biophysical research communications, 2004. 318(2): p. 562-570.
47. Roy K, M.H., Huang SK, Leong KW., Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature medicine, 1999. 5(4): p. 387-391.
48. Chellat F, G.-L.A., Le Naour R, Fernandes J, Yahia L, Guenounou M, Laurent-Maquin D., Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials. , 2005. 26(9): p. 961-970.
49. Köping-Höggård M, V.K., Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P., Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene therapy, 2004. 11(19): p. 1441-1452.
50. Felgner PL, G.T., Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America, 1987 84(21): p. 7413-7417.
51. Li S, H.L., Nonviral gene therapy: promises and challenges. Gene therapy, 2000. 7(1): p. 31-34.
52. Behr JP, D.B., Loeffler JP, Perez-Mutul J., Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(18): p. 6982-6986.
53. Felgner JH, K.R., Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M, Felgner PL., Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. The Journal of biological chemistry, 1994. 269(4): p. 2550-2561.
54. Gao X, H.L., A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochemical and biophysical research communications, 1991. 179(1): p. 280-285.
55. Dauty E, R.J., Zuber G, Behr JP., Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjugate chemistry, 2002. 13(4): p. 831-839.
56. Zuber G, Z.-I.L., Dauty E, Behr JP., Targeted gene delivery to cancer cells: directed assembly of nanometric DNA particles coated with folic acid. Angewandte Chemie, 2003. 16: p. 2666-2669.
57. Xu L, H.C., Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH., Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Molecular cancer therapeutics, 2002. 1(5): p. 337-346.
58. Ogris M, B.S., Schüller S, Kircheis R, Wagner E., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene therapy, 1999. 6(4): p. 595-605.
59. http://www.abedia.com/wiley/index.html.
60. AD., M., The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Current medicinal chemistry, 2003. 10(14): p. 1195-1211.
61. Nicolazzi C, G.M., Mignet N, Scherman D, Bessodes M., Cationic lipids for transfection. Current medicinal chemistry, 2003. 10(14): p. 1263-1277.
62. Tan Y, L.F., Li Z, Li S, Huang L., Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. molecular therapy, 2001. 3(5): p. 673-682.
63. Liu F, S.L., Huang L., Non-immunostimulatory nonviral vectors. The FASEB journal 2004. 18(14): p. 1779-1781.
64. Sorgi FL, B.S., Huang L., Protamine sulfate enhances lipid-mediated gene transfer. Gene therapy, 1997. 4(9): p. 961-968.
65. Gao X, H.L., Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry, 1996. 35(3): p. 1027-1036.
66. Gottschalk S, S.J., Hauer J, Mims MP, Leland FE, Woo SL, Smith LC., A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene therapy, 1996. 3(5): p. 448-457.
67. Tagawa T, M.M., Brown N, Keller M, Perouzel E, Murray KD, Harbottle RP, Tecle M, Booy F, Brahimi-Horn MC, Coutelle C, Lemoine NR, Alton EW, Miller AD., Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide mu and plasmid DNA. Gene therapy, 2002. 9(9): p. 564-576.
68. Li S, H.L., In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene therapy, 1997. 4(9): p. 891-900.
69. Li S, R.M., Bhattacharya S, Huang L., Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene therapy, 1998. 5(7): p. 930-937.
70. Arangoa MA, D.N., Tros de Ilarduya C., Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene therapy, 2003. 10(1): p. 5-14.
71. Yang NS, B.J., Roberts B, Martinell B, McCabe D., In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(24): p. 9568-9572.
72. Zhang G, G.X., Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D., Hydroporation as the mechanism of hydrodynamic delivery. Gene therapy, 2004. 11(8): p. 675-682.
73. Maruyama H, H.N., Nishikawa Y, Hirahara H, Iino N, Kameda S, Kawachi H, Yaoita E, Gejyo F, Miyazaki J., Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Human gene therapy, 2002. 13(3): p. 455-468.
74. Zhang G, B.V., Williams P, Subbotin V, Wolff JA., Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Human gene therapy, 2001. 12(4): p. 427-438.
75. Walther W, S.U., Fichtner I, Malcherek L, Lemm M, Schlag PM., Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene therapy, 2001. 8(3): p. 173-180.
76. Dileo J, M.T.J., Chesnoy S, Huang L., Gene Transfer to Subdermal Tissues via a New Gene Gun Design. Human gene therapy, 2003. 14(1): p. 79-87.
77. DJ., W., Gene therapy progress and prospects: electroporation and other physical methods. Gene therapy, 2004. 11(18): p. 1363-1369.
78. Kircheis R, K.A., Wallner G, Kursa M, Ogris M, Felzmann T, Buchberger M, Wagner E., Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene therapy, 1997. 4(5): p. 409-418.
79. Harbottle RP, C.R., Hart SL, Ladhoff A, McKay T, Knight AM, Wagner E, Miller AD, Coutelle C., An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Human gene therapy, 1998. 9(7): p. 1037-1047.
80. Forrest ML, P.D., On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Molecular therapy, 2002. 6(1): p. 57-66.
81. E., W., Effects of membrane-active agents in gene delivery. Journal of controlled release, 1998. 53(1-3): p. 155-158.
82. Erbacher P, R.A., Monsigny M, Midoux P., Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Experimental cell research, 1996. 225(1): p. 186-194.
83. Wagner E, P.C., Zatloukal K, Cotten M, Birnstiel ML., Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(17): p. 7934-7938.
84. Wyman TB, N.F., Zelphati O, Scaria PV, Plank C, Szoka FC Jr., Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997. 36(10): p. 3008-3017.
85. Simões S, S.V., Gaspar R, de Lima MC, Düzgüneş N., Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene therapy, 1998. 5(7): p. 955-964.
86. Zhang X, S.G., Dong X, Qiu Y, Collins L, Fabre JW., The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct. The journal of gene medicine, 2003. 5(3): p. 209-218.
87. Spargo BJ, C.L., Ioneda T, Beaman BL, Crowe JH., Cord factor (alpha,alpha-trehalose 6,6'-dimycolate) inhibits fusion between phospholipid vesicles. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(3): p. 737-740.
88. Goren MB, D.A.H.P., Young MR, Armstrong JA., Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 1976. 73(7): p. 2510-2514.
89. Li B, L.S., Tan Y, Stolz DB, Watkins SC, Block LH, Huang L., Lyophilization of cationic lipid-protamine-DNA (LPD) complexes. Journal of pharmaceutical sciences, 2000. 89(3): p. 355-364.
90. Jane A. Plumb, R.M., S. B. Kaye, Effects of the pH Dependence of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide-Formazan Absorption on Chemosensitivity Determined by a Novel Tetrazolium-based Assay. Cancer research, 1989. 49: p. 4435-4440.
91. Tseng WC, H.F., Giorgio TD., Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. The Journal of biological chemistry, 1997. 272(41): p. 25641-25647.
92. Branca C, M.S., Magazù S, Maisano G, Bennington SM, Taylor J., Tetrahedral order in homologous disaccharide-water mixtures. The Journal of chemical physics, 2005. 122(17): p. 174513.
93. Dirama TE, C.G., Sokolov AP., Role of hydrogen bonds in the fast dynamics of binary glasses of trehalose and glycerol: a molecular dynamics simulation study. The Journal of chemical physics, 2005. 122(11): p. 114505.
94. Gonçalves C, M.E., Fuchs R, Gorvel JP, Midoux P, Pichon C., Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Molecular therapy, 2004. 10(2): p. 373-385.
95. Sasaki AW, W.S., Jain M, Wagner RC., Mechanism of sucrose uptake by isolated rat hepatocytes. Journal of cellular physiology, 1987. 133(1): p. 175-180.
96. McKinley DN, W.H., Reassessment of fluid-phase endocytosis and diacytosis in monolayer cultures of human fibroblasts. Journal of cellular physiology, 1988. 136(3): p. 389-397.

無法下載圖示 全文公開日期 2013/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE