簡易檢索 / 詳目顯示

研究生: 林育聖
Lin-yu Sheng
論文名稱: 新型開關式雙頻帶CMOS壓控振盪器與高效能平衡式四相位壓控振盪器之設計
Design of Novel Dual-Band VCO Using the Mode Switched Resonator and High-Performance Balanced QVCO
指導教授: 張勝良
Sheng-lyang Jang
口試委員: 徐敬文
Ching-wen Hsue
鄧恒發
Heng-fa Teng
馮武雄
Wu-shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 109
中文關鍵詞: 開關式雙頻帶平衡式四相位壓控振盪器
外文關鍵詞: mode switching, differential dual-band VCO, balanced VCO, complementary Colpitts VCO
相關次數: 點閱:225下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出了四個電壓控制振盪器。第一顆晶片實現於台積電0.18微米製程,電路的操作頻帶在8.2GHz的LC環型電壓控制振盪器。第二顆晶片則是用台積電0.18微米製程實現的開關式雙頻帶壓控振盪器其操作的頻帶分別是4GHz、6GHz。第三顆晶片則是用台積電0.18微米製程實現、操作頻帶在6 GHz的高效能平衡式四相位電壓控制振盪器。第四顆是利用台積電0.18微米製程實現,操作頻帶在7 GHz的新式利用電容耦合注入四相位壓控振盪器。
我們提出一個新型環式三相位壓控振盪器使用台積電0.18微米製程。由三個單端互補式的畢茲壓控振盪器使用可變電容串接耦合成三相位輸出。當控制電壓從0 V至1.1 V變化時,三相位壓控振盪器操作頻率從8.22 GHz的8.81 GHz,可調範圍0.59 GHz,此電路之電源電壓為1.1 V和VCO的核心功耗為2.82 mW,所測量到在1 MHz偏移頻率下的相位雜訊為 - 118.3為dBc / H。 VCO的晶片面積1.018×0.7 mm2 。FOM為-192.39 dBc / Hz。
其次,提出了一種高性能的開關式雙頻帶CMOS電壓控制振盪器(VCO)。開關切換式雙頻帶壓控振盪器由一對NMOS切換高頻段與低頻段。隨著共振腔切換,奇模態的VCO工作在高頻,偶模態的VCO工作在低頻。操作頻率範圍在5.6 ~ 6.66 GHz和4.13 ~ 4.75 GHz。面積是0.84×1.1 mm2。當電源給定0.75 V時,高(低)頻段的(FOM)是-193.6(-192.3)為dBc / Hz。
第三部分則提出了一個高效能平衡式四相位電壓控制振盪器。由兩個平衡式Colpitts VCO所形成的四相位壓控振盪器。利用直接注入二倍頻的方式,將兩個core電路頂端的兩倍頻注入至另一core電路,電路互相鎖定可得到四相位輸出。在電源電壓1.2 V,總功耗為4.32 mW。頻率可調範圍為13.4%,從5.92 GHz到6.77 GHz,晶片面積為0.843× 1.024 mm2。而在輸出頻率為6.74 GHz時,1 MHz偏移頻率下的相位雜訊為-121.67 dBc / Hz和QVCO的FOM為-191.89 dBc / Hz。
最後,我們提出了新型使用電容耦合注入的四相位壓控振盪器。我們以兩組壓控振盪器利用第一諧波訊號相互注入鎖定的方式設計一個LC-tank四相位的壓控振盪器,由一組ILO輸出訊號注入另一組ILO的可變電容,由兩組ILO訊號耦合產生四相位的輸出訊號。在1.1V的供電電壓,總功耗為5.94 mW。頻率可調範圍從6.56 GHz到7.83 GHz,晶片面積為0.504× 0.803 mm2。而在輸出頻率為7.34 GHz時,1 MHz偏移頻率下的相位雜訊為-123.01 dBc / Hz,其FOM為-192.5 dBc / Hz。


This thesis presents four voltage-controlled oscillators (VCOs). First one is a new three-phase LC-ring voltage controlled oscillator. Second one is a high-performance CMOS voltage-controlled oscillator (VCO) with two sub-frequency bands. Finally, we present two new quadrature voltage-controlled oscillators (QVCOs). The above circuits are fabricated in the TSMC 0.18 μm CMOS process.
We present a new three-phase LC-ring voltage controlled oscillator (VCO) using the TSMC 0.18μm 1P6M CMOS process. The VCO consists of three single-ended complementary Colpitts VCOs coupled via a varactor ring. The VCO operates from 8.22 GHz to 8.81 GHz with 7 % tuning range. The measured phase noise at 1 MHz offset is -118.37 dBc/Hz at 8.45 GHz. The power consumption of the VCO core is 2.82 mW at the supply voltage of 1.1 V. The chip area of 1.018×0.74 mm2. The figure of merit is -192.39 dBc/Hz.
Secondly, we proposes a high-performance CMOS voltage-controlled oscillator (VCO) with two sub-frequency bands. The VCO consists of two cross-coupled VCOs coupled by a pair of mode-switched LC resonators. A pair of nMOSFET is used to switch high- and low-frequency bands. With the switched resonator, the odd mode VCO operates at the high-band and the even mode VCO operates at the low-band. The die area of the dual-band VCO is 0.84×1.1 mm2. At the supply voltage of 0.75 V, the total power consumption is 4.65 mW. The proposed VCO has been implemented with the TSMC 0.18 μm 1P6M CMOS technology and it can generate differential signals in the frequency range of 5.6 ~ 6.66 GHz and 4.13 ~ 4.75 GHz and it also has comparable high output voltage swings at both low and high-frequency bands. The high (low)-band figure of merit (FOM) is -193.6(-192.3) dBc/Hz.

In the third part, a new CMOS quadrature voltage-controlled oscillator (QVCO) is proposed. The LC-tank QVCO consists of two balanced complementary Colpitts VCOs with differential outputs. The tail inductor output of the first balanced VCO is injected to the gate of the tail transistor in the second balanced VCO and vice versa to ensure the two balanced VCOs operate in quadrature. With the supply voltage of 1.2 V, the free-running frequency tuning range is 13.4%, tunable from 5.92 GHz to 6.77 GHz as the tuning voltage is varied from 0 V to 2 V. The QVCO has been implemented with the TSMC 0.18 μm CMOS technology and the die area is 0.843×1.024 mm2. The phase noise of the VCO operating at 6.74 GHz is -121.67 dBc/Hz at 1 MHz offset, while the VCO draws 3.6 mA and uses 4.32 mW consumption. The figure of merit is -191.89 dBc/Hz.
Finally, we presents a new quadrature voltage- controlled oscillator (QVCO). The LC-tank QVCO consists of two first-harmonic injection-locked oscillators (ILOs). The outputs of one ILO are injected to the common nodes of varactors on the other ILO and vice versa so as to force the two ILOs operate in quadrature. At the supply voltage of 1.1 V, the output phase noise of the QVCO is -123.01 dBc/Hz at 1MHz offset frequency from the carrier frequency of 7.34 GHz, and the figure of merit (FOM) is -192.5 dBc/Hz. The total power consumption is 5.94 mW. The free-running frequency tuning range is 11.5%, tunable from 6.56 GHz to 7.83 GHz as the tuning voltage is varied from 0.0 V to 2 V. The QVCO has been implemented with the TSMC 0.18 μm CMOS technology and the die area is 0.504 × 0.803 mm2.

中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Overviews of Oscillators 6 2.1 Introduction 6 2.2 The Oscillator Theory 6 2.2.1 Feedback Oscillators 6 2.3 The Classification of Oscillators 10 2.3.1 Resonatorless Oscillators 10 2.3.1.1 Ring Oscillator 10 2.3.1.2 Relaxation Oscillator 11 2.3.2 LC-Tank Oscillators 12 2.3.2.1 Colpitts and Hartley Oscillators 14 2.2.3.2 Negative -Gm Oscillators 16 2.4 The parameters of Voltage-Controlled Oscillators 17 2.4.1 Center Frequency[Hz] 17 2.4.2 Phase Noise [dbc/Hz] 17 2.4.3 Frequency Tuning Range[Hz] 18 2.4.4 Tuning Linearity [Hz/V]: 18 2.4.5 Power Consumption (W)[mW] 19 2.4.6 Output Signal Power[dBm] 19 2.4.7 Figure-of-Merit (FoM)[dBc/Hz] 19 2.5 Phase Noise in Oscillators 20 2.5.1 Definition of Phase Noise 20 2.5.2 Leeson’s Linear Time-Invariant (LTI) Phase Noise Model 21 2.5.3 Hajimiri’s Linear Time-Variant Phase Noise Model 25 2.5.4 Noise Sources 27 2.5.4.1 Thermal noise 27 2.5.4.2 Flicker noise 30 2.5.5 Phase Noise in Communications 31 2.5.6 Models of Phase Noise 33 2.6 Quality Factor 34 2.7 Semiconductor Process of Chips 36 2.7.1 Resistors 36 2.7.2 Inductors 37 2.7.3 Transformers 45 2.7.3.1 Planar transformer : 47 2.7.3.2 Stacked transformer 48 2.7.4 Capacitors 50 2.7.5 Varactors 52 2.7.5.1 P-N Junction Varactors 52 2.7.5.2 MOS Varactors 53 2.7.5.3 Inversion-Mode PMOS Varactor (I-MOS) 55 2.7.5.4 Accumulation-Mode PMOS Varactor (A-MOS) 56 2.9 Voltage-Controlled Oscillator Design 57 2.9.1 Cross-Coupled VCO [23] 57 2.9.1.1 Complementary Cross-Coupled Topology 58 2.9.2 Quadrature VCO Design 61 Chapter 3 A Three-Phase Voltage-Controlled Oscillator Using the Varactor-Ring Coupling Technique Resonator 66 3.1 Introduction 66 3.2. Circuit Design 67 3.3. Measurement results 73 Chapter 4 Dual-Band VCO Using the Mode Switched Resonator 77 4.1. Introduction 77 4.2. Circuit Design 78 4.3. Measurement Results 81 Chapter 5 A CMOS Quadrature VCO Implemented with Balanced VCOs 86 5.1 Introduction 86 5.2. Circuit Design 87 5.3. Measurement Results 90 Chapter 6 A CMOS Quadrature VCO Implemented with Direct Capacitor Injection-Locking 93 6.1. Introduction 93 6.2. Circuit Design 94 6.3. Measurement Results 97 Chapter 7 Conclusion 101 References 104

[1]J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[2]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[3]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[4]T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[5]A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[6]A. Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[7]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[8]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[9]A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
[10]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[11]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[12]Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
[13]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[14]C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
[15]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[16]A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[17]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
[18]K. Shu, E. Sanchez-Sinencio, CMOS PLL Synthesizers : Analysis and Design, Springer, 2005.
[19]A. Porret, T. Melly, C. Enz, and E, Vittoz, “Design of high-Q varactors for low-power wireless applications using a standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, pp. 337-345, Mar. 2000.
[20]F. Svelto, P. Erratico, S. Manzini, and R. Castello, “A metal oxide semiconductor varactor,” IEEE Electron Device Lett., vol. 20, pp. 164-166, Apr. 1999.
[21]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jun. 2000.
[22]T. Soorapanth, C. Yue, D. Shaeffer, T. Lee, and S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI Circuits Dig. Tech. Papers, , pp. 22-23. Jun. 1998.
[23]李少華, 張勝良, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” Apr. 2007.
[24]B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
[25]A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
[26]B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[27]S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
[28]J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a Ring Structure,” ISSCC Digest of Technical Papers, pp.430-431, Feb. 2000.
[29]J. Savoj, B. Razavi, High-Speed CMOS Circuits For Optical Receivers, Kluwer Academic Publishers, 2001.
[30]A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.

[31]L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators." IEEE Trans. Circuits Syst. II, vol. 49, no. 5, pp. 328-338, 2002.
[32]B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-. State Circuits, vol. 31, no.3, pp. 331–343, Mar. 1996.
[33]J. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure”, in ISSCC digest of technical papers, pp. 430-431, 2000.
[34]S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol.19, no.4, pp. 233-235, April, 2009.
[35]S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425 – 427.
[36]A. Lai, T. Itoh, and C. Caloz, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.
[37]S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
[38]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, June 2001.
[39]S.-L. Jang, T.-Y. Cheng, C.-W. Chang, and C.-W. Hsue,” A three-phase complementary Colpitts VCO implemented with a LC-ring resonator,” Micro. and Opt. Tech. Lett., vol. 35, no. 10, pp.2308-2310, Oct., 2011.
[40]T.-H. Huang and Y.-R. Tseng, ” A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct., 2008.
[41]D. Baek, T. Song, E. Yoon, and S. Hong, “8 GHz CMOS quadrature VCO using transformer-based LC tank," IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446-448, Oct. 2003.
[42]C.-Y. Yang, C.-H. Chang, J.-M. Lin, and J.-H. Weng, ” A 0.6 V 10 GHz CMOS VCO using a negative-Gm back-gate tuned technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 163-165, March 2011.
[43]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[44]Z. Li and K. K. O, “A 900-MHz 1.5-V CMOS voltage-controlled oscillator using switched resonators with a wide tuning range,” IEEE Micro. Wireless Compon. Lett., vol. 13, no. 4, pp. 137–139, Apr. 2003.
[45]Z. Li and K. K. O, “A low-phase-noise and low-power multi-band CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
[46]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
[47]S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
[48]B. Çatli and M. M. Hella, “A 1.94 to 2.55 GHz, 3.6 to 4.77 GHz tunable CMOS VCO based on double-tuned, double-driven coupled resonators,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2463–2477, Sep. 2009.
[49]S. L. Jang, Y. H. Chuang, C. C. Chen, S. H. Lee and J. F. Lee, “A CMOS dual-band voltage controlled oscillator”, IEEE Asia Pacific Conf. Circuits and Systems, 2006, pp. 514 – 517, Dec.2006.
[50]D. Baek, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microwave Wireless Compon Lett., vol. 13, no. 10, pp. 443–445, Oct. 2003.
[51]G. Li, and E. Afshari, “A distributed dual-band LC oscillator based on mode switching,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 99–107, Jan. 2011.
[52]A. H-T. Yu, et. al., “A mm-wave arbitrary2N band oscillator based on even-odd mode technique”, IEEE RFIC, pp. 141-144, June 2010.
[53]H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE Radio Frequency Integrated Circuits Symp, Jun. 2002, pp. 71–74.
[54]S.-M. Yim and K.K. O, “Switched resonators and their applications in a dual-band monolithic MOS_LC-tuned VCO,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
[55]L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Micro. Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
[56]Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power CMOS differential Armstrong VCOs with balanced current-reused topology, ” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 139-141, Feb. 2007.
[57]S. Lo and S. Hong, “Noise property of a quadrature balanced VCO,” IEEE Microw. Wireless Compon. Lett.,vol. 15, no. 10, pp.673-675, Oct. 2005.
[58] D. Baek, S. Ko, J.-G. Kim, D.-W. Kim and S. Hong, “Ku-band InGaP–GaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1353-1359, Jan. 2004.
[59]A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[60]H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 412–413.
[61]S.-L. Jang, C.-C. Liu, J.-F. Huang, Y.-K. Wu, and J.-J. Chen, ” Quadrature VCOs using single-ended injected injection-locked frequency dividers, ”IEICE Trans. Electron., vol. E92-C, no. 9, pp. 1226-1229, Sept. 2009.
[62]J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[63]T.-H. Huang and Y.-R. Tseng, ” A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct., 2008.
[64]K.-W. Kim, H. -J. Chang, Y.-M. Kim, and T. -Y. Yun, ” A 5.8 GHz low-phase-noise LC-QVCO using splitting switched biasing technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 337-339, June., 2010.
[65]J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[66]S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
[67]S.-L. Jang, S.-H. Huang, C.-C. Liu and M.-H. Juang, ” CMOS Colpitts quadrature VCO using the body injection-locked coupling technique,” IEEE Microw. Wireless Compon. Lett., pp. 230-232, April, 2009.
[68]S.-L. Jang, S.-S. Huang, C.-F. Lee, and M.-H. Juang ” CMOS quadrature VCO implemented with two first-harmonic injection-locked oscillators,” IEEE Microw. Wireless Compon. Lett., pp.695-697, Oct. 2008.
[69]S.-Y. Lee, L.-H. Wang, and Y.-H. Lin , “A CMOS quadrature VCO with subharmonic and injection-locked techniques ,”IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 11, pp. 843–847, Nov. 2010.
[70]C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans.on Microw. Theory and Tech., vol. 53, no. 3, pp. 881-887, Mar. 2005.
[71]S.-L. Jang, C.-C. Liu, J.-F. Huang, Y.-K. Wu, and J.-J. Chen, ” Quadrature VCOs using single-ended injected injection-locked frequency dividers,” IEICE Trans. Electron., Vol.E92-C, No.9, pp.1226-1229, Sept. 2009.
[72]S.-L. Jang, S.-H. Huang, C.-C. Liu and M.-H. Juang, ” CMOS Colpitts quadrature VCO using the body injection-locked coupling technique,” IEEE Microw. Wireless Compon. Lett., pp. 230-232, April, 2009.
[73]J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC Quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005
[74]J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[75]T.-H. Huang and Y.-R. Tseng, ” A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., pp. 698-700, Oct., 2008.
[76]S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, July 2003.

無法下載圖示 全文公開日期 2017/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE