簡易檢索 / 詳目顯示

研究生: 許宇萱
Yu-Hsuan Hsu
論文名稱: 石墨烯氧化物與磁性奈米混合物合成與生物醫學應用
Synthesis of graphene oxide-based magnetic nano-hybrids toward biomedical applications
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
李玉郎
Yuh-Lang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 76
中文關鍵詞: 石墨烯
外文關鍵詞: graphene oxide based magnetic nano-hybrids
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化石墨烯因為其非凡的電學,熱學,機械和結構特性而受到極大的關注在材料科學領域。近年來也一直致力於探索石墨烯氧化物在生物醫學應用潛力。而碳塗覆的鐵納米顆粒是一種新型的磁性納米粒子的可在腫瘤部位通過一個局部地施加的外部磁場被保留。在這項研究中,關於環糊精結合石墨烯氧化物的合成和表徵,與碳塗覆鐵的奈米顆粒的分析和碳塗覆鐵的奈米顆粒結合石墨烯氧化物已經成功完成。此外,將氧化石墨烯,氧化石墨烯結合環糊精和碳塗覆鐵的奈米顆粒結合石墨烯氧化物來當作癌細胞識別結合的官能基,以及搭載抗癌藥物阿黴素。結果表明阿黴素在氧化石墨烯結合環糊精上的裝載量總是比氧化石墨烯高,因為在環糊精可包含阿黴素。而碳塗覆鐵的奈米顆粒結合石墨烯氧化物有很高的藥物載體,因為碳塗覆鐵的奈米顆粒可以通過π-π堆積,疏水性和氫鍵提高裝載量。
藥物釋放曲線示表示出很強的酸鹼度依賴性,尤其是當藥物和納米材料的相互作用力是基於氫鍵。藥物釋放行為應用在酸鹼度值5和酸鹼度值7。由於微環境中的腫瘤和細胞內溶酶體和內涵體的細胞外組織是酸性的。


Graphene Oxide has received tremendous attention in the field of materials science because of its extraordinary electrical, thermal, mechanical, and structural properties. Recently, great efforts have also been devoted to explore potential application of graphene oxide in biomedicine. Carbon coated iron nanoparticles are new kind of magnetic nanoparticles can be retained at tumor sites by a locally applied external magnetic field. In this study, the synthesis and characterization of cyclodextrin-immobilized graphene oxide (GO-CD), carbon coated iron nanoparticles (Fe@C) and Fe@C-bound GO-CD were successfully performed. Furthermore, the controlled loading of doxorubicin (DOX), an anti-cancer drug, onto GO, GO-CD, Fe@C, Fe@C-bound GO and Fe@C-bound GO-CD was investigated. It showed that the loading capacity of DOX on GO-CD was always higher than GO, since the inclusion of DOX in CD. Fe@C-bound GO-CD was most high because loading of DOX on Fe@C can occur via π-π stacking, hydrophobic and hydrogen bonding.

The release profile shows strong pH dependence, especially when the interaction forces of the drug and nanomaterials are based on hydrogen bonds. And drug release behavior was invested at pH 5 and pH 7 due to the micro environments in the extracellular tissues of tumors and intracellular lysosomes and endosomes are acidic.

Abstract i 摘要 ii Acknowledgements iii Table of Content iv List of Figures vi List of Tables ix Chapter 1-Introduction 1 1.1 Graphene oxide in biomedical application 1 1.2 Cyclodextrins in drug delivery 3 1.3 Carbon coated iron nanoparticles in biomedial application 5 Chapter 2-Motivation 7 Chapter 3-Experimental section 8 3.1 Chemicals 8 3.2 Instruments 9 3.3 Experimental procedure 10 3.3.1 Synthesis of amino-β-cyclodextrin 10 3.3.2 Preparation of nano-graphene oxide (GO) 11 3.3.3 Synthesis of amino-β-cyclodextrin-functionalized graphene oxide (GO-CD) 11 3.3.4 Preparation of carbon-coated iron nanoparticles (Fe@C) 12 3.3.5 Synthesis of Fe@C-bound GO and GO-CD 13 3.3.6 DOX-loading on GO and its nano-hybrids 13 3.3.7 In vitro DOX release response 13 Chapter 4-Results and Discussion 14 4.1 Characterization of amino-β-cyclodextrin and GO-CD 14 4.1.1 Characterization of amino-β-cyclodextrin 14 4.1.2 Characterization of GO-CD 17 4.2 Conjugation of DOX on GO and GO-CD for drug delivery 26 4.2.1 DOX loading amount on GO and GO-CD 26 4.2.2 Characterization of DOX on GO and GO-CD 30 4.2.3 Efficiency of DOX releasing from GO and GO-CD 32 4.3 Characterization of carbon-coated iron nanoparticles (Fe@C) and Fe@C-bound GO 34 4.3.1 Characterization of Fe@C 34 4.3.2 Characterization of Fe@C-bound GO 43 4.4 Conjugation of DOX on Fe@C, Fe@C-bound GO and Fe@C-bound GO-CD for drug delivery 49 4.4.1 DOX loading amount on Fe@C, Fe@C-bound GO and Fe@C-bound GO-CD 49 4.4.2 Characterization of DOX on Fe@C, Fe@C-bound GO and Fe@C-bound GO-CD 55 4.4.3 Efficiency of DOX releasing from Fe@C, Fe@C-bound GO and Fe@C-bound GO-CD 57 Chapter 5-Summary and Conclusion 59 List of References 6

[1] LiuZ, R. JT., Sun XM, Dai H (2008). "PEGylated nanographene oxide for delivery of water-insoluble cancer drugs ." J Am Chem Soc.: 10876-10877.
[2] Shen H., Zhang. L., Liu M., and Zhang Z. (2012),2(3). "Biomedical application of graphene." Theranostics: 283-294.
[3] Shan CS, Y. HF, Han DX, Zhang Q, Ivaska A, Niu L (2009). "Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine." Langmuir: 12030-12033.
[4] Sun XM, L. Z., Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008). "Nano-graphene oxide for cellular imaging and drug delivery." Nano Res: 203-212.
[5] Lei HZ, M. L., Zhou XJ, Chen J, Hu J, Guo S, Zhang Y (2011). "Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion." Nanoscale: 3888-3892.
[6] Zhang JL, Z. F., Yang HJ, Huang X, Liu H, Zhang J, Guo S (2010). "Graphene oxide as a matrix for enzyme immobilization." Langmuir: 6083-6085.
[7] Dong HF, G. W., Yan F (2010). "Fluorenscence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules." Anal Chem: 5511-5517.
[8] Chen WH, Y. P., Zhang Y (2011). "Composites of aminodextrancoated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging." ACS Appl Mater Interfaces: 4085-4091.
[9] M. E. Davis and M. E. Brewster (2004). "Cyclodextrin-based pharmaceutics: past, present and future." Nat. Rev Drug dicovery: 1023-1035.
[10] Liu, Y. C. a. Y. (2010). "Cyclodextrin-based bioactive supramolecular assemblies." Chem. Soc. Rev: 495-505.
[11] F. van de Manakker, T. V., C.F. van Nostrum and W.E. Hennink (2009). "Cyclodextrin-based polymeric materrials: synthesis, properties, and pharmaceutical/biomedical applications." Biomacromolecules: 3157-3175.
[12] E. Bilensoy, A. A. H., Expert Opin (2009). "Recent advances and future directions in amphiphilic cyclodextrin nanoparticles." Drug Delivery: 1161-1173.
[13] S. Daoud-Mahammed, P. C., K.Bouchemal, M. Cheron, G. Lebas, C. Amiel and R. Gref (2009). "Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen biomacromolecules." 547-554.
[14] Haag, R. (2004). "Supramolecular drug-delivery systems based on polymeric core-shell architectures." Angew.Chem.: 278-282.
[15] J., S. (1991). "Cyclodextrin in drug formulations." Pharm Technol: 15-23.
[16] Beata Chertoka, B. A. M., Allan E. Davida, Faquan Yua, Christian Bergemannc, and V. C. Y. Brian D. Rossb (2007). "Iron oxide nanoparticles as a drug delivery vehicle for MRI monitoredmagnetic targeting of brain tumors." ELSEVIER: 488-490.
[17] Jing Tang , B. K., Hao Wu , Ming Xu , Yongcheng Wang , Yanli Wang , and a. G. Z. Dongyuan Zhao (2013). "Carbon Nanodots Featuring Efficient FRET for Real-TimeMonitoring of Drug Delivery and Two-Photon Imaging." Advanced Materials: 6569-6571.
[18] Hidenori Ohashi, Y. H., Takeo Yamaguchi (2006). "An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property." Macromolecules: 2614-2620.
[19] Tomoko Yamazaki, Toyoko Imae. (2005). "Preparation of dendrimer SAM on Au substrate and adsorption/desorption of Poly-L-glutamate on the SAM." J. Nanosci. Nanotech: 1066-1071.
[20] Xiaoying Yang, X. Z., Zunfeng Liu, Yanfeng Ma, Yi Huang, Yongsheng Chen (2008). "High-Efficiency loading and controlled released of doxorubicin hydrochloride on graphene oxide." J.Phys. Chem. C: 17554-17558.
[21] Q.Yuan R. Venkatasubramanian, S. H., R. D. K. Misra (2008). "A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer." Acta Biomaterialia: 1024-1037.
[22] LI N, L. J., Zhao X, Gao Y, Zhang L, Zhang J, Yu L (2007). "Complex formation of ionic liquid surfactant and cyclodextrin." Collids Surf.A: 196-201.
[23] G.Goncalves, P. A. A. P. M., C.M.Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Gracio (2009). "Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth." Chem.Mater: 4796-4802.
[24] M.Wei, J. W., J.He, D.G. Evans, X. Duan (2005). "In situ FTIR, in situ HT-XRD and TPDE study of thermal decomposition of sulfated cyclodextrin intercalated in layered double hydroxides." Micropor. Mesopor. Mat.: 53-61.
[25] Tian X, C. C., Yuan H, Du J, Xiao D, Xie S, Choi MM (2012). "Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles cyclodextrin graphene-modified electrode by square wave voltammetry." Talanta: 79-85.
[26] Jianghua liu, G. C., Ming Jiang (2011). "Supramolecular Hybrid Hydrogels from Noncovalently Functionlized Graphene with Block Copolymers." Macromolecules: 7683-7691.
[27] Ogoshi T, I. Y., Yamagishi TA, Nakamoto Y. (2010). "Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-beta-cyclodextrin." Chem. Commun: 6087-6089.
[28] Oyang, X. G. M. a. J. Y. (2011). "Carbon-based solids and materials." Carbon: 5389-5397. Zhang H, T. T., Feng W, van der Spoel D. (2012).
[29] Zhang H, T. T., Feng W, van der Spoel D. (2012). "Molecular recognition on different environments: beta-cyclodextrin dimer formation on organic solvents." J Phys Chem B: 12684-12693
[30] Yang X, Z. X., Liu Z, Ma Y, Huang Y, Chen Y (2008). "High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide." J. Phys. Chem. C: 17554-17558.
[31] Zhang W, Z. C., Zhou W, Lei A, Zhang Q, Wan Q, Zou B (2011). "Fast and considerable adsorption of methylene blue dye onto graphene oxide." Bull. Environ. Contam. Toxicol: 86-90
[32] Guldi D M, M. M., Paolucci D, Paolucci F (2003). "Single-Wall Carbon nanotube ferrocene nanohybrids: Observing Intramolecular Electron Transfer in functionalized SWNTs." Chem: 4206-4209.
[33] Murakami H, N. T., Nakashima N (2003). "Noncovalent porphrin-functionalized single walled carbon nanotubes in solution and formation of porphyrin-nanotube nanocompositeds." Chem: 481-485.
[34] Sun XM, L.Z., Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, (2008) "Nano-graphene oxide for cellular imaging and drug delivery." Nano Res,: 203-212.
[35] Yang X, Z.X., Liu Z, Ma Y, Hung Y, Chen Y,(2008)" High efficiency loading and controlled release of DOX hydrochliride on Graphene Oxide. "J.Phys. Chem: 17554-17558.
[36] Liu Z, R.J., Sun XM, Dai H,(2008)"PEGylated nanographene oxide for delivery of water-insoluble cancer drugs." J Am Chem Soc:10876-10877
[37] Chen R, Z.Y., Wang D, Dai H (2001)" Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization." J Am Chem Soc:3838-3839.
[38] Liu Z, S.X., Nakayama, N Dai H(2007) "Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ": 50-56.
[39] Sanchez VC, J.A., Hurt RH, Kane AB, "Biological Interactions of Graphene-family nanomaterials: An Interdisciplinary Review. "Chem. Res. Toxicol, 2012:15-34.
[40] Davis, M.E.(2009)"Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin." Drug Delivery: 1189-1192.
[41] Torchilin VP, L.T., Lukyanov AN, Khaw BA, Klibanov AL(2001)" p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chain via p-nitrophenylcabonyl groups."Biochim Biophys Acta 397-411.
[42] Sun XM, L.Z., Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, (2008) "Nano-graphene oxide for cellular imaging and drug delivery." Nano Res,: 203-212.
[43] Karoliina Junka, J. G., Ilari Filpponen, Janne Laine, and Orlando J. Rojas (2014). "Modification of Cellulose Nanofibrils with Luminescent Carbon Dots." Biomacromolecules: 879-880.
[44] Yu-Chen Hsieh1, Yu-Chuan Chou1, Chun-Ping Lin, Tung-Feng Hsieh and Chi-Min Shu (2009). "Thermal Analysis of Multi-walled Carbon Nanotubes by Kissinger’s Corrected Kinetic Equation" Aerosol and Air Quality Research: 215-216
[45] Jing Tang , B. K., Hao Wu , Ming Xu , Yongcheng Wang , Yanli Wang , and a. G. Z. Dongyuan Zhao (2013). "Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging." advanced materials: 6569-6571.
[46] CHEN JIN, Z. H., LI LIPING, ZHANG LI (2013). "Super-paramagnetic carbon coated iron nanoparticles and biological magnetic induction heating properties." Nanomaterials and Biostructures: 44-45.
[47] Cheng, L.; Yang, K.; Li, Y., Chen, J.; Wang, C.; Shao, M. Lee, S. T. Liu, Z. (2011)Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dualtargeted photothermal therapy. Angew. Chem Int. Ed.: 7385–7390.
[48] Cheng, L.; Yang, K.; Li, Y.; Zeng, X.; Shao, M.; Lee, S. T., Liu, Z. (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials, in press, DOI: 10.1016/j.biomaterials.2011.11.069.
[49] Chertok, B.; David, A. E.; Yang, V. C. (2012) Polyethyleneiminemodified
iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.Biomaterials:6317–6324.

QR CODE