簡易檢索 / 詳目顯示

研究生: 周妏璘
Wen-Lin Chou
論文名稱: 不同離子濃度下C3A-石膏-鈣礬石的強塑劑吸附及流變行為
Superplasticizer Adsorption and Rheological Behaviors of C3A-Gypsum-Ettringite under Various Ionic Concentrations
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 黃兆龍
Chao-Lung Hwang
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 144
中文關鍵詞: C3A石膏鈣礬石流變行為強塑劑吸附行為離子濃度
外文關鍵詞: C3A, gypsum, ettringite, rheological behaviors, superplasticizers, adsorption, ion concentration
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討在不同離子濃度與萘磺酸基強塑劑劑量下C3A-石膏-鈣礬石於水化初期之流變及強塑劑吸附行為,進而討論影響水泥漿體流變與強塑劑吸附行為之主要因子。研究發現,水泥漿體水化初期之黏度改變可能與C3A的水化作用密切相關,C3A之黏度在水化短時間內大幅上升,而水化後期之黏度則變化不定。水泥漿體晚期的黏度可能受石膏所影響,鈣礬石的影響則較低。此外,若提高溶液中的鹼離子濃度,石膏與鈣礬石的黏度皆隨著強塑劑劑量之增加而減少。另一方面,就強塑劑的吸附行為而言,C3A的單位面積吸附量極高,故水泥漿體中之強塑劑吸附量可能多源於C3A上的吸附。另一方面,在高強塑劑劑量下石膏的單位面積吸附量較C3A低但比鈣礬石還高。當增加拌合溶液中的鹼離子濃度時,強塑劑對石膏之吸附較易飽和,其吸附曲線趨於平緩,而鈣礬石之吸附量則不易達飽和,C3A單位面積之強塑劑吸附量略為提高。總而言之,在不同的鹼離子濃度下,強塑劑之吸附還是以C3A為最高,而水泥水化初期之黏度與C3A的強塑劑吸附行為密切相關。


This study explored the rheological behaviors and superplasticizer adsorptions of C3A-gypsum-ettringite in the presence of the naphthalene-based superplasticizer and then further discussed the major influencing factors in the rheological behaviors and superplasticizer addition of the cement pastes. Results showed that the viscosities of the cement pastes during the early hydration were possibly associated with the hydration of C3A. The viscosity of C3A was increased greatly but fluctuated at later hydration time. The viscosities of the cements at later hydration time were possibly influenced by the gypsum, and then the ettringite. In addition, when the alkali concentrations in solutions were increased, both the viscosities of the gypsum and ettringite were reduced by the increases of superplasticizer dosages. The superplasticizer adsorption on the cement particles was mostly attributed to the high adsorption per unit surface area of C3A. On the other hand, at high superplasticizer dosages, the adsorption of gypsum per unit surface area is lower than that of C3A but higher than that of ettringite. When the alkali concentrations in pore solutions were increased, the adsorption of gypsum is saturated at a less superplasticizer dosage, leading to a smooth adsorption curve. In contrast, the adsorption on ettringite is always not saturated. The adsorption on C3A per unit surface area is only increased slightly. In summary, at different alkali concentrations, the superplasticizer adsorption was always the highest in C3A, suggesting that the viscosity of the cement paste during the early hydration was closely associated with that adsorption on C3A.

摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1水泥 2.1.1水泥的組成 2.1.2水泥的水化行為 2.2 C3A-石膏-鈣礬石之系統 2.5強塑劑 2.5.1強塑劑的成份與種類 2.5.2強塑劑的作用與其對水泥化合物之影響 2.6流變與黏度 2.6.1黏度與流變之量測 第三章 試驗計畫 3.1實驗的變數 3.1.1水泥化合物與水化物 3.1.2水灰比的設定 3.1.3強塑劑的種類 3.1.4強塑劑的添加量 3.1.5溶液的酸鹼值 3.1.6離子種類與濃度 3.1.7時間的變因 3.2 水泥之使用 3. 3使用藥品 3.4強塑劑固含量檢測試驗 3.5合成試驗 3.5.1C3A合成試驗 3.5.2鈣礬石合成試驗 3.6損失率試驗 3.7粒徑分析 3.8比表面積分析 3.9黏度試驗 3.10吸附試驗 3.11離子濃度試驗 3.12掃描式電子顯微鏡 3.13 X光繞射分析儀 3.14五頓動態試驗機 3.15迷你坍度錐試驗 3.16其他試驗器材與儀器 第四章 結果分析與討論 4.1前言 4.2先期試驗 4.2.1 C3A之物化性質分析 4.2.2 鈣礬石之物化性質分析 4.2.3損失率試驗 4.2.4黏度之水灰比測定 4.2.5其他試驗參數之測定 4.4強塑劑對水泥漿體的影響 4.4.1黏度與吸附之關係 4.4.2水泥孔隙水溶液之離子含量 4.5強塑劑對石膏的影響 4.5.1黏度與吸附之關係 4.5.2不同離子濃度下黏度與吸附之關係 4.5.3離子濃度與黏度之影響 4.5.4 XRD圖譜分析 4.6強塑劑對鈣礬石的影響 4.6.1黏度與吸附之關係 4.6.2不同離子濃度下黏度與吸附之關係 4.6.3離子濃度與黏度之影響 4.6.4 XRD圖譜分析 4.7強塑劑對C3A的影響 4.7.1黏度與吸附之關係 4.7.2不同離子濃度下黏度與吸附之關係 4.7.3不同離子濃度下水化溫度之關係 4.7 XRD圖譜分析 4.8水泥與C3A-石膏-鈣礬石系統間黏度之關係 4.9迷你坍度錐試驗 第五章 結論與建議 5.1結論 5.2建議 參考文獻 附錄A 不同拌合溶液下漿體之pH值測定 附錄B添加不同比例之石膏或鈣礬石下水泥漿體之黏度圖 附錄C 石膏、鈣礬石及C3A對水泥強塑劑吸附行為之影響程度圖

[1] F. Basile, S. Biagini, G. Ferrari, M. Collepardi, "Effect of the gypsum state in industrial cements on the action of superplasticizers", Cement and Concrete Research, Vol.17, No.5, pp.715-722, 1987
[2] 沈進發, "混凝土品質控制-管理、材料、施工、試驗", 文興彩色印刷有限公司, 第15版, 台灣台北, pp.59-63, 1996
[3] 王櫻茂, "混凝土", 三民書局, 台灣台北, pp.11, 1974
[4] F. Lin, C. Meyer, "Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure", Cement and Concrete Research, Vol.39, No.4, pp.255-265, 2009
[5] 沈永年, 王和源, 林仁益, 郭文田, "混凝土技術", 全華圖書股份有限公司, 第四版, 台灣, pp.3-2~3-20, 2011
[6] D. M. Kirby, J. J. Biernacki, "The effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate cements: Testing the two-step hydration hypothesis", Cement and Concrete Research, Vol.42, No.8, pp.1147-1156, 2012
[7] 黃兆龍, "豪華第三版混凝土性質與行為", 詹氏書局, 台灣台北, pp.49- 85, 2007
[8] 林東燦, "污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究", 碩士論文, 國立中央大學, 環境工程研究所, pp.21-34, 2006
[9] V. S. Ramachandran, "Handbook of Analytical Techniques in Concrete Science and Technology", William Andrew Publishing, Norwich, NY, pp.1-62, 2001
[10] E. Gallucci, P. Mathur, K. Scrivener, "Microstructural development of early age hydration shells around cement grains", Cement and Concrete Research, Vol.40, No.1, pp.4-13, 2010
[11] A. V. Girao, I. G. Richardson, C. B. Porteneuve, R. M. D. Brydson, "Composition, morphology and nanostructure of C–S–H in white Portland cement pastes hydrated at 55 °C", Cement and Concrete Research, Vol.37, No.12, pp.1571-1582, 2007
[12] P. Livesey, A. Donnelly, C. Tomlinson, "Measurement of the heat of hydration of cement", Cement and Concrete Composites, Vol.13, No.3, pp.177-185, 1991
[13] J. F. Y. Sidney mindess, David Darwin, "Concrete", second edition,Prentice Hall, pp.57-62, 2003
[14] C. Evju, S. Hansen, "The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate", Cement and Concrete Research, Vol.35, No.12, pp.2310-2321, 2005
[15] C. Rosler, A. Eberhardt, H. Kučerova, B. Moser, "Influence of hydration on the fluidity of normal Portland cement pastes", Cement and Concrete Research, Vol.38, No.7, pp.897-906, 2008
[16] K. S. Han, J. A. Gard, F. P. Glasser, "Compositions of stable and metastable C3A solid solutions crystallized from simulated clinker melts", Cement and Concrete Research, Vol.11, No.1, pp.79-84, 1981
[17] S. P. Varma, C. D. Wall, "A monoclinic tricalcium aluminate (C3A) phase in a commercial Portland cement clinker", Cement and Concrete Research, Vol.11, No.4, pp.567-574, 1981
[18] E. H. Kadri, S. Aggoun, G. De Schutter, "Interaction between C3A, silica fume and naphthalene sulphonate superplasticiser in high performance concrete", Construction and Building Materials, Vol.23, No.10, pp.3124-3128, 2009
[19] E. Breval, "Gas-phase and liquid-phase hydration of C3A", Cement and Concrete Research, Vol.7, No.3, pp.297-303, 1977
[20] 龔人俠, "水泥工業叢書第一輯-水泥化學概論", 台灣區水泥工業同業公會印行, 台灣, pp.15, 1977
[21] G. Camarini, J. A. De Milito, "Gypsum hemihydrate–cement blends to improve renderings durability", Construction and Building Materials, Vol.25, No.11, pp.4121-4125, 2011
[22] E. Alvarez-Ayuso, H. W. Nugteren, "Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry", Water Research, Vol.39, No.1, pp.65-72, 2005
[23] A. Quennoz, K. L. Scrivener, "Hydration of C3A–gypsum systems", Cement and Concrete Research, Vol.42, No.7, pp.1032-1041, 2012
[24] R. B. Perkins, C. D. Palmer, "Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3 • 26H2O) at 5–75°C", Geochimica et Cosmochimica Acta, Vol.63, No.13–14, pp.1969-1980, 1999
[25] M. Collepardi, "Admixtures used to enhance placing characteristics of concrete", Cement and Concrete Composites, Vol.20, No.2–3, pp.103-112, 1998
[26] M. Katsioti, N. Patsikas, P. Pipilikaki, N. Katsiotis, K. Mikedi, M. Chaniotakis, "Delayed ettringite formation (DEF) in mortars of white cement", Construction and Building Materials, Vol.25, No.2, pp.900-905, 2011
[27] V. R. Ouhadi, R. N. Yong, "Ettringite formation and behaviour in clayey soils", Applied Clay Science, Vol.42, No.1–2, pp.258-265, 2008
[28] 張有義, 郭蘭生編譯, "膠體及界面化學入門", 高立圖書有限公司, 台灣台北, pp.85-86, 2004
[29] 簡尚弘, "強塑劑及磁化水對廢觸媒自充填混凝土工程性質之影響", 碩士論文, 國立雲林科技大學, 營建工程系, pp.3-5, 2009
[30] 郭義浩, "強塑劑對混凝土質流行為之影響", 碩士論文, 國立中興大學, 土木工程研究所, pp.6-9, 2002
[31] ASTM-C494/C494M-12, "Standard specification for chemical admixtures for concrete", ASTM International, West Conshohocken, 2013
[32] J. Dransfield, "Advanced Concrete Technology Set", Butterworth-Heinemann, Oxford, pp.3-36, 2003
[33] V. S. Ramachandran, V. M. Malhotra, "Concrete Admixtures Handbook (Second Edition)", William Andrew Publishing, Park Ridge, NJ, pp.410-517, 1996
[34] 郭文田, "添加飛灰及強塑劑對混凝土材料巨微觀性質影響之研究", 碩士論文, 國立台灣工業技術學院, 營建工程系, pp.14-18, 1990
[35] 郭文田, "添加強塑劑對水泥材料水化及其早期行為之影響", 博士論文, 國立中央大學, 土木工程研究所, 2000
[36] 廖東昇, "飛灰與強塑劑對高性能混凝土工程性質影響之研究", 博士論文, 國立台灣科技大學, 營建工程系, pp.5-7, 2006
[37] L. J. Struble, P. W. Brown, "An evaluation of ettringite and related compounds for use in solar energy storage", National Bureau of Standards, Progress Report, NBSIR 84-2942, pp.5-7, 1984
[38] S. Chandra, J. Bjornstrom, "Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars—Part I", Cement and Concrete Research, Vol.32, No.10, pp.1605-1611, 2002
[39] W. Prince, M. Edwards-Lajnef, P. C. Aı̈tcin, "Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste", Cement and Concrete Research, Vol.32, No.1, pp.79-85, 2002
[40] V. S. Ramachandran, "Concrete Admixtures Handbook (Second Edition)", William Andrew Publishing, Park Ridge, NJ, pp.95-136, 1996
[41] T. He, C. Shi, G. Li, X. Song, "Effects of superplasticizers on the carbonation resistance of C3S and C3A hydration products", Construction and Building Materials, Vol.36, No.0, pp.954-959, 2012
[42] K. Yoshioka, E.-i. Tazawa, K. Kawai, T. Enohata, "Adsorption characteristics of superplasticizers on cement component minerals", Cement and Concrete Research, Vol.32, No.10, pp.1507-1513, 2002
[43] W. Prince, M. Espagne, P. C. Aı̈tcin, "Ettringite formation: A crucial step in cement superplasticizer compatibility", Cement and Concrete Research, Vol.33, No.5, pp.635-641, 2003
[44] J. Peng, J. Qu, J. Zhang, M. Chen, T. Wan, "Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster", Cement and Concrete Research, Vol.35, No.3, pp.527-531, 2005
[45] 楊文怡, "黏土漿體流變性之量測", 碩士論文, 國立雲林科技大學, 營建工程系, pp.3-10, 2003
[46] R. Shaughnessy Iii, P. E. Clark, "The rheological behavior of fresh cement pastes", Cement and Concrete Research, Vol.18, No.3, pp.327-341, 1988
[47] O. H. Wallevik, J. E. Wallevik, "Rheology as a tool in concrete science: The use of rheographs and workability boxes", Cement and Concrete Research, Vol.41, No.12, pp.1279-1288, 2011
[48] 王志賢, "粗顆粒材料對土石流體流變特性影響之實驗研究", 碩士論文, 國立成功大學, 水利及海洋工程研究所, pp.6-7, 2002
[49] 林昌緯, "添加強塑劑下石灰石水泥漿體之流變行為研究", 碩士論文, 國立台灣科技大學, 營建工程系, pp.21-27, 2012
[50] "SV-A series users’ handbook", A&D Company, 2009
[51] ASTM-C1017/C1017M-07, "Standard specification for chemical admixtures for use in producing flowing concrete", ASTM International, West Conshohocken, 2013
[52] ASTM-C778-00, "Standard specification for standard sand", ASTM International, West Conshohocken, 2013
[53] L. J. Struble, "Synthesis and characterization of ettringite and related phases", In:8th International Congress on the Chemistry of Cement, Vol.VI, pp.582-588, 1986
[54] G. Renaudin, Y. Filinchuk, J. Neubauer, F. Goetz-Neunhoeffer, "A comparative structural study of wet and dried ettringite", Cement and Concrete Research, Vol.40, No.3, pp.370-375, 2010
[55] "Model V-530/550/560/570 spectrophotometer instruction manual", JASCO, Tokyo, Japan, Tokyo, Japan, 1996
[56] V. T. Yilmaz, A. Kindness, F. P. Glasser, "Determination of sulphonated naphthalene formaldehyde superplasticizer in cement: A new spectrofluorimetric method and assessment of the UV method", Cement and Concrete Research, Vol.22, No.4, pp.663-670, 1992
[57] "JSM-6390, JSM-6390LV Scanning electron microscope", JEOL, pp.1-1~1-15, 2006
[58] R. A. Helmuh, "Abnormal concrete performance in the presence of admixtures", Portland Cement Association,Skokie,IL, 1995
[59] "Purelab classic operator manual", ELGA, UK, UK, 2007
[60] D. Bonen, S. L. Sarkar, "The superplasticizer adsorption capacity of cement pastes, pore solution composition, and parameters affecting flow loss", Cement and Concrete Research, Vol.25, No.7, pp.1423-1434, 1995
[61] A. Leemann, B. Lothenbach, C. Thalmann, "Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction", Construction and Building Materials, Vol.25, No.1, pp.344-350, 2011
[62] D. K. B Salopek, S Filipović, "Measurement and Application of Zeta-Potential", Rudarsko-geoloSko-naftni zbornik, Vol.4, pp.147-151, 1992
[63] D. Freyer, W. Voigt, "Crystallization and phase stability of CaSO4 and CaSO4-based salts", Monatshefte Fur Chemie, Vol.134, No.5, pp.693-719, 2003
[64] M. J. Sanchez-Herrero, A. Fernandez-Jimenez, A. Palomo, "Alkaline Hydration of Tricalcium Aluminate", Journal of the American Ceramic Society, Vol.95, No.10, pp.3317-3324, 2012
[65] S.-S. Chen, P. K. Mehta, "Zeta potential and surface area measurements on ettringite", Cement and Concrete Research, Vol.12, No.2, pp.257-259, 1982
[66] I. Odler, J. Colan-Subauste, "Investigations on cement expansion associated with ettringite formation", Cement and Concrete Research, Vol.29, No.5, pp.731-735, 1999
[67] K. Yamada, S. Ogawa, S. Hanehara, "Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase", Cement and Concrete Research, Vol.31, No.3, pp.375-383, 2001

無法下載圖示 全文公開日期 2018/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE