簡易檢索 / 詳目顯示

研究生: 許廖淵
Liao-yuan Hsu
論文名稱: 應用SOFC預防聯結車之鐮刀效應
SOFC Design of Articulated Vehicles Jack-knife Prevention
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 姜嘉瑞
Chia-jui Chiang
黃緒哲
Shiuh-jer Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 54
中文關鍵詞: 聯結車鐮刀效應差動煞車
外文關鍵詞: Articulated Vehicles, jackknife, differential braking
相關次數: 點閱:302下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將針對聯結半拖車於不同負載的情況下,設計自組織模糊控制器,透過其學習法則來控制半拖車後方之差動煞車,藉以預防鐮刀效應的發生。此外,本研究利用線性聯結車模型與TruckSim來模擬兩種轉向駕駛行為:等速步階轉向與魚鉤轉向,並由模擬指出自組織模糊控制器於車輛參數不確定時,能追蹤到一致性的理想第五輪角度。隨後將此控制器實際應用於縮小型聯結車上,實驗結果顯示自組織模糊控制器能於不同負載下,逐漸追蹤到期望之第五輪響應。


    In this research the differential braking design for articulated vehicle jackknife prevention is investigated. To handle the variations in the semi-trailer loading condition, a self-organizing fuzzy control that can update its control law through a set of learning algorithm is employed. Two different types of driving scenarios are investigated, namely the constant speed step steering and a fish hook maneuver. Computer simulations, both using a linearized vehicle model and the TruckSim® vehicle model, indicate that the SOFC performs consistently well in tracking the desired fifth wheel angle under different loading conditions. Experimental results of scaled articulated vehicle also show that SOFC can track the fifth wheel angle to the desired response under different load.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻探討 2 1-2-1 鐮刀效應 3 1-2-2 聯結車輛安全系統 4 1-2-3 自組織模糊控制 6 1-3 論文目標 7 1-4 工作項目 8 1-5 預期貢獻 8 第二章 實驗設備與聯結車車輛參數量測 9 2-1 縮小型聯結車 9 2-2 資料擷取平台與控制 10 2-3 縮小型聯結車車輛參數量測 13 第三章 聯結車車輛模型分析與驗證 17 3-1 聯結車車輛模型 17 3-2 縮小型聯結車之 -Group維度分析 19 3-3 驗證縮小型聯結車模型 24 3-4 半拖車在不同負載與重心位置下的第五輪響應 25 第四章 自組織模糊控制器設計 28 第五章 控制器性能之模擬與實驗 33 5-1 理想的第五輪角度 33 5-2 線性聯結車模型--模擬SOFC、MRAC[2]、PID性能 34 5-3 TruckSim--模擬鐮刀效應與SOFC性能 38 5-4 實驗驗證SOFC之性能 40 第六章 結論與未來展望 44 6-1 結論 44 6-2 未來展望 44 參考文獻 45 附錄A 聯結車動態方程式 [25] 45 附錄B 模型參數定義 [25] 53

    [1] Y. He, A. Khajepour, J. McPhee, and X. Wang, “Dynamic modeling and stability analysis of articulated frame steer vehicles,” International Journal of Heavy Vehicle Systems, Vol.12, No. 1, 2005, pp.28-59.
    [2] 謝育安 “應用MRAC設計聯結車鐮刀效應預防控制器” 國立台灣科技大學機械工程系,2009
    [3] R. G. Longoria, A. Al-Sharif, and C. B. Patil, “Scaled vehicle system dynamics and control: A case study in anti-lock braking,” International Journal of Vehicle Autonomous Systems, Vol. 2, No. 1-2, 2004, pp.18-39.
    [4] W. E. Travis, R. J. Whitehead, D. M. Bevly, and G. T. Flowers, “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” Proceedings of the American Control Conference, Vol. 4, 2004, pp.3381-3386.
    [5] S. Brennan and A. Alleyne, “Scaled testbed for vehicle control: The IRS,” IEEE Conference on Control Applications - Proceedings, Vol. 1, 1999, pp.327-332.
    [6] S. Brennan and A. Alleyne, “Robust scalable vehicle control via non-dimensional vehicle dynamics,” Vehicle System Dynamics, Vol. 36, No. 4-5, Nov. 2001, pp.255-277.
    [7] A. Alleyne, S. Brennan, B. Rasmussen, R. Zhang, and Y. Zhang, “Controls and Experiments: Lessons Learned,” IEEE Control Systems Magazine, Vol 23, No. 5, Oct. 2003, pp.20-34.
    [8] S. Brennan and A. Alleyne, “Dimensionless robust control with application to vehicles,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 4, Jul. 2005, pp.624-630.
    [9] 徐錦衍 “以縮小型車輛探討聯結車輛之鐮刀效應預防” 國立台灣科技大學機械工程系,2007
    [10] Anon, “Are Anti-jackknife Devices Feasible,” Automotive Engineering, Vol. 97, No. 11, Nov. 1989, pp.39-41.
    [11] T. Kaneko and I. Kageyama, “A study on the braking stability of articulated heavy vehicles,” JSAE Review 24(2003), pp.157-164.
    [12] W. Ma and H. Peng, “Worst-case manoeuvres for the roll-over and jackknife of articulated vehicles,” American Control Conference, 1998. Proceedings of the1998, Philadelphia, PA, USA, Vol. 4, Jun. 24-26 1998, pp.2263-2267.
    [13] W. Ma and H. Peng, “Worst-Case Vehicle Evaluation Methodology-Examples on Truck Rollover/Jackknifing And Active Yaw Control Systems,” Vehicle System Dynamics, Vol. 32, Issue 4 & 5, Nov. 1999 , pp.389-408.
    [14] M. Bouteldja, A. Koita, V. Dolcemascolo, and J. C. Cadiou, “Prediction and
    Detection of Jackknifing Problems for Tractor Semi-Trailer,” Vehicle Power and Propulsion Conference, 2006. VPPC '06. IEEE, Windsor, England, UK, Sept. 6-8 2006
    [15] A. T. Keller, “Jackknife Control for Tractor-Trailer,” SAE International, paper No. 730643, Feb. 1973
    [16] “Anti-jackknifing apparatus for a semitrailer rig,” http://www.patentstorm.us/patents/4720118.html
    [17] “Anti-jackknifing mechanism,” http://www.patentstorm.us/patents/5224727.html
    [18] “Anti-jackknife apparatus for trailer trucks,” http://www.freepatentsonline.com/4991863.html
    [19] http://www.safeeu.com/pdfs/prod_sheet.pdf
    [20] H. Wilkins, “Stability of articulated vehicles,” J Automot Eng, Vol. 2, No. 3,
    Mar. 1971, pp.13-17.
    [21] R. E. Walsh and G. E. Cicchetti, “Use of Simplified Jackknife Restraint Device Significantly Reduces The Hazard of Jackknifing,” SAE Preprints, No. 730642, 1973.
    [22] Susemihl, E. Alfonso, Krauter, and I. Allan, “Automatic Stabilization of Tractor Jackknifing in Tractor-Semitrailer Trucks,” SAE Preprints, No. 740551, 1974.
    [23] D. D.Eisele and H. Peng, “ Vehicle Dynamics Control With Rollover Prevention for Articulated Heavy Trucks,” Proceedings of AVEC 2000 5th Int’l Symposium on Advanced Vehicle Control , Ann Arbor, Michigan, Aug. 22-24 2000.
    [24] B. Stevenson and P. Ridley, “An automated vehicle stability control system for heavy articulated vehicles,” Proceedings of the 2005 Australasian Conference on Robotics & Automation, Sydney, Australia, Dec. 5-7 2005.
    [25] C. Chen and M. Tomizuka, “Lateral Control of Commercial Heavy Vehicle,” Vehicle System Dynamics, Vol. 33, No. 6, June 2000, pp.391-420.
    [26] C. Chen and M. Tomizuka, “Steering and Independent Braking Control for Tractor-Semitrailer Vehicle in Automated Highway Systems,” Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, New Orleans, LA, USA, Vol. 2, Dec. 13-15 1995, pp.1561-1566.
    [27] C. Chen and M. Tomizuka, “Modeling and Control of Articulated Vehicles,” California Partners for Advanced Transit and Highways (PATH), Research Reports: Paper UCB-ITS-PRR-97-42, Jan. 1 1997.
    [28] T. S. Lee, Y. H. Chen, and C. H. Chuang, “Regulating Performance for Tractor-Semitrailer Vehicle Systems: A Lyapunov Minimax Approach,” American Control Conference, 1997. Proceedings of the 1997, Albuquerque, NM, USA, Vol. 4, Jun 4-6 1997, pp.2473-2477.
    [29] C. MacAdam and M. Hagan, “A simple differential brake control algorithm for attenuating rearward amplification in doubles and triples combination vehicles,” Vehicle System Dynamics, Vol. 37, n SUPPL.,2003, pp.234-245.
    [30] T. Zhu and C. Zong, “Modelling and Active Safe Control of Heavy Tractor Semi-Trailer,” 2nd International Conference on Intelligent Computing Technology and Automation, Vol. 2, 2009, pp.112-115.
    [31] R. McCann and A. Le, “Electric motor based steering for jackknife avoidance in large trucks,” Vehicle Power and Propulsion, 2005 IEEE Conference, Chicago, Illinois, USA, Sep. 2005, pp.103-109.
    [32] L. A. Zadeh, “Fuzzy Sets,” Information and control, Vol. 8, 1965, pp.338-353.
    [33] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No. 1, Jan. 1973, pp.28-44.
    [34] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” Int. J. Man-Machine Studies, Vol. 7, 1975, pp.1-13.
    [35] T. J. Procyk and E. H. Mamdani, “A Linguistic Self-Organizing Process Controller,” Automatica, Vol. 15, 1979, pp.15-30.
    [36] C. Z. Yang, “Design of real-time linguistic self-organizing fuzzy controller,” MSc thesis, Department of Mechanical Engineering, National Taiwan University, 1992.
    [37] C. L. Chen and Y. M. Chen, “Self-organizing fuzzy logic controller design,” Computers in Industry, Vol. 22, 1993, pp.249-261.
    [38] S. J. Huang and C. Y. Shy, “Fuzzy Logic for Constant Force Control of End Milling,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 1, Feb. 1999, pp.169-176.
    [39] S. J. Huang and W. C. Lin, “A Self-Organizing Fuzzy Controller for an Active Suspension System,” Journal of Vibration and Control, Vol. 9, No. 9, Sep. 2003, pp.1023-1040.
    [40] R. J. Lian and B. F. Lin, “New modifying self-organizing fuzzy controller for robotic motion control,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 9-10, Jul. 2006, pp.1074-1087.
    [41] H. B. Kazemian, “Comparative study of a learning fuzzy PID controller and a self-tuning controller,” ISA Transactions, Vol. 40, No. 3, 2001, pp.245-253.
    [42] J. Qiao and H. Wang, “A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling,” Neurocomputing, Vol. 71, No. 4-6, Jan. 2008, pp.564-569.
    [43] Q. Wang, M. Oya, K. Okumura, and T. Kobayashi, “Adaptive Steering Controller to Improve Handling Stability of Combined Vehicles,” Innovative Computing, Information and Control, 2007. ICICIC '07. Second International Conference on, Kumamoto, Japan, Sep. 5-7 2007, pp.428-428.
    [44] S. N. Brennan, “On Size and Control : The Use of Dimension Analysis in Controller Design,” University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering, Ph.D. Thesis, 2002.
    [45] S. J. Huang, “INTELLIGENT CONTROL SYSTEM,” National Taiwan University of Science and Technology, Department of Mechanical Engineering, Ph.D.

    QR CODE