簡易檢索 / 詳目顯示

研究生: 陳勁甫
Jin-Fu Chen
論文名稱: 射出成形纖維排向之二維數值模擬
Two-Dimensional Numerical Prediction of Fiber Orientation in the Injection Molding Process
指導教授: 趙修武
Shiu-Wu Chau
口試委員: 陳炤彰
Chao-Chang Chen
周文祥
none
黃明賢
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 射出成形數值模擬纖維排向
外文關鍵詞: Injection Molding Process, Numerical Simulation, Fiber Orientation
相關次數: 點閱:259下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究進行纖維二維排向模擬分析在射出成形過程中,並探討射出成形不同幾何形狀對於纖維排向的影響,以了解各參數對纖維排向之重要性。本研究使用連續、動量及能量方程式描述模穴內的流場,並利用波前方程式得知塑料在模穴內波前位置。
本研究使用有限體積法離散流場統御方程式,利用流體體積法來計算熔膠之波前分佈,以Cross-WLF黏度方程式描述融膠黏度與溫度以及剪切率的關係。本研究使用流場速度分佈來追跡纖維粒子在流場中不同時間的位置,接若求解以描述纖維排向之二階張量數學模型以獲得纖維在不同時間下的排向情形,本研究中纖維位置與排向皆利用五階Runge-Kutta 法加以求解。本研究主要探討其幾何形狀對纖維排向之影響,探討十種不同形狀,觀察不同充填時間下纖維排向。


This study predicts the two-dimensional fiber orientation in the injection molding process and to explore the influence of various parameters on the fiber orientation in the injection molding process. In this study melt flow inside the cavity is described by the continuity equation, momentum equations, energy equation and the front transport equation. The governing equations are discretized by a finite volume approach, while the volume of fluid method is employed to calculate the location of melt front. To describe the dependence of melt viscosity on temperature and shear rate the Cross-WLF model is adpoted in this study.The location of fiber at different time instance is first traced by a Lagrangian approach. The orientation of fiber is then calculated by solving the differential equation of the second-order tensor. A fifth-order Runge-Kutta method is used to solve the pathline and tensor problem.This study found that most of the fiber orientation tends to flow direction.In this study investigated the geometric shape of fiber orientation effect. To explore ten different shapes. To observe the different filling time of fiber orientation.

符號表IV 圖目錄VII 表目錄XII 第一章緒論1 1-1研究動機與目的1 1-2文獻回顧3 第二章數學模型與數值方法7 2-1統御方程式7 2-2數值離散方法14 2-3塑膠材料特性模型17 第三章計算模型與參數20 3-1成品幾何尺寸20 3-2計算參數25 3-3邊界條件26 第四章幾何形狀對於纖維排向之影響32 第五章結論85 參考文獻86

[1]張智韋,「反壓控制超臨界流體微細發泡射出成形之氣泡成長數值模擬」,臺灣科技大學機械工程研究所碩士論文,2013。
[2]李奕翰,「模內裝飾射出成形之薄膜滯熱效應數值模擬」,臺灣科技大學機械工程研究所碩士論文,2011。
[3]莊英杰,「氣體輔助射出成形中氣體穿透現象之數值模擬分析研究」,中原大學機械工程研究所碩士論文,2007。
[4]孫貴美,「利用 Folgar-Tucker 模式預測射出成形纖維排向之研究」,清華大學化學工程研究所碩士論文,1992。
[5]周瑞昌,「纖維在二維圓管穩定流場中與射出成形時排向分佈之研究」,清華大學化學工程研究所碩士論文,1991。
[6]Li H. M., Chen S. C., Shen C., Chau S. W. and Lin Y. L., “Numerical Simulations and Verifications of Cyclic and Transient Temperature Variations in Injection Molding Process”, Polymer-Plastics Technology and Engineering, 2008, 48.
[7]Chau S. W., “Three-Dimensional Simulation of Primary and Secondary Penetration in a Clip-Shaped Square Tube during a Gas-Assisted Injection Molding Process”, Polymer Engineering and Science, 2008, 48(9), 1801-1814.
[8]Chau S. W., “Validation of Numerical Models for Predicting Gas Penetration Characteristics at Different Gas Injection Pressure in Gas-Assisted Injection Molding Process”, Asian Workshop on Polymer Processing 2008.
[9]Chiang H. H., “Simulation and Verification of Filling and Post-filling Stages of the Injection-Molding Process”, CIMP Tech Report, 1989, 62(2), 200-288.
[10]Batchelor G. K., “The Stress Generated in a Non-Dilute Suspension of Elongated Particles By Pure Straining Motion,” Journal of Fluid Mechanics, 1971, 46(4), 813-829.
[11]Jeffery G. B., “The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1922, 102(715), 161-179.
[12]Crowson R. J., Folkes M. J. and Bright P.F., “Rheology of Short Glass Fiber-Reinforced Thermoplastics and its Application to Injection Molding I. Fiber Motion and Viscosity Measurement,” Journal of Polymer Engineering Science, 1980, 20(14), 925-933 .
[13]Sanou M., Chang B. and Cohen C., “Glass Fiber-Filled Thermoplastics:Ⅱ Cavity Filling and Fiber Orientation in Injection Molding,” Journal of Polymer Engineering Science, 1985, 16(25), 1008-1010.
[14]Kenig S., “Fiber Orientation Development in Molding of Polymer Composites,” Journal of Polymer Composites, 1986, 1(7), 50-52.
[15]Folgar F. and Tucker C. L., “Orientation Behavior of Fibers in Concentrated Suspensions,” Journal of Reinforced Plastics and Composites, 1984, 3(98), 98-119.
[16]Lipscomb II G. G., Denn M. M., Hur D. U. and Boger D. V., “The Flow of Fiber Suspensions in Complex Geometries,” Journal of Non-Newtonian Fluid Mechanics, 1988, 26, 297-325.
[17]Ranganathan S. and Advani S. G., “Fiber-Fiber Interactions in Homogeneous Flows of Nondilute Suspensions,” Journal of Rheology, 1991, 35(8), 1499-1522.
[18]Advani S. G. and Tucker C. L., “The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites,” Journal of Rheology, 1987, 31(8), 751-784.
[19]Doi M. and Edwards S. F., “Dynamics of Rod-Like Macromolecules in Concentrated Solution: Part 2,” Journal of Chemical Society, Faraday Transactions, 1978, 74(2), 918-932.
[20]Doi M. and Edwards S. F., “Dynamics of Rod-Like Macromolecules in Concentrated Solution: Part 1,” Journal of Chemical Society, Faraday Transactions, 1978, 74(2), 560-570.
[21]Han K. H. and Im Y. T., “Numerical Simulation of Three-Dimensional Fiber Orientation in Injection Molding Including Fountain Flow Effect,” Polymer Composite, 2002, 23(2), 222-238.
[22]Lee S. C., Yang D. Y., Ko J. and Youn J. R., “Effect of Compressibility on Flow Field and Fiber Orientation During the Filling Stage of Injection Molding,” Journal of Materials Processing Technology, 1997, 70, 83-92.
[23]Bay R. S. and Tucker C. L., “Fiber Orientation in Simple Injection Moldings. part I: Theory and Numerical Methods,” Polymer Composites, 1992, 13(4), 239-268.
[24]Altan M. C., Subbian S., Guceri S. I. and Pipes R. B., “Numerical Prediction of Three-Dimensional Fiber Orientation in Hele-Shaw Flows,” Polymer Engineering and Science, 1990, 30(14), 848-859.
[25]Hamid S. A. and Masood G., “Effects of Some Injection Molding Process Parameters on Fiber Orientation Tensor of Short Glass Fiber Polystyrene Composites (SGF/PS),” Journal of Reinforced Plastics and Composites, 2007, 26(17), 1729-1741.
[26]Oumer A. N., Ali A. M. and Mamat O. B., “Numerical Simulation of Fibre Orientation in Simple Injection Molding Processes,” International Journal of Mechanical & Mechatronics, 2009, 9(9), 361-367.
[27]Gillespie J. W., Vanderschuren J. A. and Pipes R. B., “Process Induced Fiber Orientation Numerical Simulation with Experimental Verification,” International Journal of Mechanical & Mechatronics, 1985, 6(2) 82-85.
[28]Jackson W. C., Folgar F. and Tucker C. L., “Flow-Induced Alignment in Composite Materials,” Polymer Blends and Composites in Multiphase System American Chemical,
1997, 33(20), 4322-4330.
[29]Jackson W. C., Advani S. G. and Tucker C. L., “Predicting the Orientation of Short Fibers in Thin Compression Moldings,” Journal of Composite Materials, 1986, 20, 539-557.
[30]Chung S. T. and Kwon, T. H., “Coupled Analysis of Injection Modeling Filling and FiberOrientation Including In-Plane Velocity Gradient Effect,” Polymer Composites, 1996, 17(6), 859-872.
[31]Ait-Kadi A. and Grmela M., “Modelling the Rheological Behaviour of Fibre Suspensions in Viscoelastic Media,” Journal of Non-Newtonian Fluid Mechanics, 1994, 53, 65-81.
[32]Frahan H. H. D., Verleye V., Dupret F. and Crochet M. J., “Numerical Prediction of Fiber Orientation in Injection Molding,” Polymer Engineering and Science, 1992, 32(4), 254-266.
[33]Greene J. P. and Wilkes J. O., “Numerical Analysis of Injection Modeling of Glass Fiber Reinforced Thermoplastics Part2: Fiber Orientation,” Polymer Engineering and Science, 1997, 37(6), 1019-1035
[34]Dinh S. M. and Armstrong R. C., “A Rheological Equation of State for Semi concentrated Fiber Suspensions,” Journal of Rheology, 1984, 28(3), 207-227.
[35]Lee W. K. and George H. H., “Flow Visualization of Fiber Suspensions,” Polymer Engineering and Science, 1978, 18(2), 146-156.
[36]Eberle Aaron P. R., Gregorio M. Velez-Garcia., Donald G. Baird. and Peter Wapperom., “Flow Orientation Kinetics of a Concentrated Short Fiber Suspension in startup of Simple Shear Flow,” Journal of Non-Newtonian Fluid Mechanics, 2009, 10, 110-119.
[37]Crowson R. J., Folkes M. J. and Bright P. F., “Rheology of Short Glass Fiber-Reinforced Thermoplastics Its Application to Injection Molding I. Fiber Motion and Viscosity Measurement,” Polymer Engineering and Science, 1980, 20(14), 925-933.
[38]Takano M., Goldsmith H. L. and Mason S. G., “The Flow of Suspensions through Tubes VII Rotation and Deformation of Particles in Pulsatile Flow,” Journal of Colloid and Interface Science, 1967, 23(2), 248-265.
[39]Lipscomb G. G. and Den M. M., “Fiber Suspensions in Complex Geometries: Flow/Orientation Coupling,” Journal of Chemical Engineering, 2002, 80, 1093-1106.
[40]Ait-Kadi A. and Grmela M., “Modelling the Rheological Behaviour of Fibre Suspensions in Viscoelastic Media,” Journal of Non-Newtonian Fluid Mechanics, 1994, 53, 65-81.
[41]Chau S. W. and Lin Y. W., “Three-Dimensional Simulation of Melt Filling and Gas Penetration in Gas-Assisted Injection Molding Process Using a Finite Volume Formulation,” Journal of Polymer Engineering, 2006, 26(5), 431-450.
[42]Chau S. W., “Numerical Investigation of Free-Stream Rudder Characteristics Using a Multi-Block Finite Volume Method,” Ph.D Thesis, University of Hamburg, 1997.
[43]Phelps J. H. and Tucker C. L., “An Anisotropic Rotary Diffusion Model for Fiber Orientation in short-and Long-Fiber Thermoplastics,” Journal of Non-Newtonian Fluid Mechanics, 2009, 156, 165-176.
[44]VerWeyst B. E., Tucker C. L., Peter H. and John, F., “Fiber Orientation in 3-D Injection Molded Features: Prediction and Experiment,” International Polymer Processing, 1999, 14(4), 409-420.
[45]Muzaferija S., Ph.D. Thesis, University of London, 1994.
[46]Patankar S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing, Washington, 1980.
[47]Rhie C. M. and Chow W. L., “Numerical Study of the Turbulent Flow Past and Airfoil with Trailing Edge Separation,” AIAA Journal, 1983, 21(11), 1525-1532.
[48]Mahrenholtz O. and Markiewicz M., “Nonlinear Water Wave Interaction, Computational Mechanics Publications,” Southampton, 1999.
[49]Muzaferija S. and Perić M., “Computation of Free-Surface Flows Using Interface-Tracking and Interface Capturing Methods,” Chap. 2 in O. Mahrenholtz and M. Markiewicz (eds.),” Nonlinear Water Wave Interaction, Computational Mechanics Publications, WIT Press, Southampton, 1999, 59-100.
[50]Ko J. and Youn J. R., “Prediction of Fiber Orientation in the Thickness Plane During Flow Molding of Short Fiber Composites,” Polymer Composites, 1995, 16(2), 114-124.

QR CODE