簡易檢索 / 詳目顯示

研究生: 劉明霖
Ming-Lin Liu
論文名稱: 以二維數值模擬格狀改良煤灰塘之抗液化能力分析
A 2-D Numerical Simulation on Liquefaction Resistance of Grid Type Ground Improved Coal Ash Pond
指導教授: 廖洪鈞
Hung-Jiun Liao
口試委員: 鄭世豪
none
郭麗雯
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 133
中文關鍵詞: 格狀改良煤灰塘土壤液化數值分析
外文關鍵詞: coal ash pond, grid type ground improvement, liquefaction, numerical analysis
相關次數: 點閱:285下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 煤灰具有比重輕、密度小、吸水率強、顆粒易破碎等特性,極易在地震中液化,而且水力排放之煤灰塘材料性質變異性大,因此欲有效利用此回填煤灰塘新建工程設施,有必要就其工程性質進行改良。鑑於日本311地震發生時,海埔新生地發生多處地層液化情形,但採用格狀改良處理之神戶市東方飯店並未因此受損害,故本研究使用二維數值模擬軟體FLAC 5.0 (Itasca),對格狀改良後煤灰層的抗液化能力加以模擬研析。探討格狀改良工法之設計參數,包括格狀改良壁體之幾何參數和配置(如:厚度、深度、淨間距等),對煤灰塘抵抗液化、震陷及側向位移能力之影響評估,並建立相關圖表,作為日後於煤灰塘上施作格狀改良時之初步設計參考。


    Coal ash consists of low density, high water-absorbing, and crushable particles. Its engineering property is different from ordinary granular soil. To use the reclaimed land by coal ash as the construction site of new structures, it needs to improve the engineering property of coal ash. According to the previous research results, the grid type ground improvement method has shown its advantages in operation, efficiency, and quality compared to the sand compaction pile method. However, the topics studied in the previous research are limited to mixing ratio of binding agents, feasibility, materials, and preliminary design concept. No attempt was made to apply this method to practice because no research has been done to find out the relationship between design parameters and anti-liquefaction ability. To ensure the safety of future facilities founded on coal ash, a finite difference method and an effective stress method were used to analyze the liquefaction resistance of grid-type ground improvement in coal ash pond. In this paper, not only the property of coal ash is studied but also the geometry of grid-type improvement are discussed. This study offers a design principle for the panel wall of grid-type improvement. The cost breakdown for the pile foundation installed in grid-type ground improvement and in the sand compaction piles method is provided for the reference of designer.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程 3 1.4 論文架構 4 第二章 文獻回顧 6 2.1 土壤液化之概述 6 2.2 土壤液化發生原因 7 2.3 液化潛能評估方法 8 2.3.1 NCEER修正之Seed簡易經驗法 8 2.3.2 Tokimatsu與Yoshimi簡易經驗法 10 2.4 地震記錄選取 11 2.5 (中)深層攪拌工法 15 2.6 中層攪拌工法(WILL 工法) 18 2.6.1 WILL 工法概述 18 2.6.2 WILL 工法特徵及設計條件 21 2.7 格狀改良工法 22 2.7.1 格狀改良工法原理及優點 23 2.7.2 格狀改良體之液化對策及設計方式 24 2.7.3 (中)深層攪拌工法用於格狀改良體之施工方式 26 2.7.4 格狀改良工法之應用 26 第三章 研究分析方法 28 3.1 前言 28 3.2 FLAC分析原理 29 3.2.1 FLAC程式概述 29 3.2.2 組合律模式 30 3.2.3 FLAC 基本術語定義及指令說明 32 3.3 FLAC動態分析 34 3.3.1 阻尼參數 34 3.3.2 邊界條件 35 3.3.3 動態荷載 37 3.3.4 Finn & Byrne模式 41 3.4 液化分析概述 45 3.5 土層及改良體參數之決定 47 第四章 分析結果與討論 48 4.1 自由場分析 48 4.1.1 地質模型 48 4.1.2 自由場分析域幾何尺寸 52 4.1.3 自由場分析結果 55 4.1.4 自由場動態分析結果 57 4.2 煤灰材料參數探討 67 4.2.1 單位重 68 4.2.2 內摩擦角 71 4.2.3 楊氏模數 75 4.2.4 柏松比 78 4.3 改良體幾何參數探討 81 4.3.1 改良壁體貫入深度 82 4.3.2 改良壁體淨間距-壁體厚度 92 4.3.3 改良壁體淨間距-分割方格數 99 4.3.4 改良壁體淨間距之綜合討論 106 4.3.5 改良體勁度 109 4.4 動力歷時及上部結構物荷載探討 114 4.4.1 動力歷時 115 4.4.2 上部結構物荷載 120 第五章 結論與建議 128 5.1 結論 128 5.2 建議 129 參考文獻 130

    1.Bowles, J. E. (1988). Foundation Analysis and Design. 4th Ed., McGraw-Hill Book Company, New York, U.S.A..
    2.Bradley B. A., Araki K., Ishii T., Saitoh K. (2011). “3-D Seismic Response of Liquefaction-Susceptible Improved-Soil Deposits.” Tokyo, JAPAN.
    3.FLAC (2005). Fast Lagrangian Analysis of Continua, Version 5.0, User’s manual, Itasca Consulting Group Inc., U.S.A.
    4.Han, J., and Ye, S. L. (1991). ‘‘Field tests of soft clay stabilized by stone columns in coastal areas in China.’’ Proc., 4th Int. Conf. on Piling and Deep Found., Balkema, Rotterdam, The Netherlands, 243–248.
    5.Martin, J. R., Olgun, C.G. (2009). “Numerical Modeling of the Seismic Response of Soil-Mixed Reinforced Ground.” Civil & Environmental, Virginia Tech, p.2296-2299, U.S.A.
    6.Mori, K., Seed, H. B., and Chan, C. K. (1978). “Influence of Sample Disturbance on Sand Response to Cyclic Loading.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. 3, p. 323-339.
    7.Namikawa T., Koseki J., Suzuki, Y. (2007). “Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation.” Soils and Foundations, Japanese Geotechnical Society, Voil. 47, No. 3, p.559-576.
    8.Nguyen, T., Rayamajhi, D., Boulanger, R., Ashford, S., Lu, J., Elgamal, A., and Shao, L. (2013). “Design of DSM Grids for Liquefaction Remediation.” J. Geotech. Geoenviron. Eng., 139(11), p.1923–1933.
    9.Seed, H. B., and Martin, P. P., and Lysmer, J. (1976). “Pore-water pressure changes during soil liquefaction.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT4, pp. 1249-1273.
    10.Tokimatsu, K. and Yoshimi, Y. (1983). “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content.” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp. 56-74.
    11.Wang, Z. L., Makdisi, F. I., and Egan, J. A. (2006). “Practical applications of a nonlinear approach to analysis of earthquake-induced liquefaction and deformation of earth structures.” Soil Dynamics and Earthquake Engineering, p.231-252.
    12.WILL Association. (2008). “WILL method-Shake mixer method (technology, calculation references).” Japan.
    13.內田明彥、山下清、村田耕司、大鳩隆、丹野吉雄(2006),「密集市街地での耐液状化格子状地盤改良の適用實例」,基礎工,v.4,p.58-61。
    14.伊勢本昇昭、金子治、田口智也 (2014),「格子状地盤改良杭工法を採用した設計•施工例」。
    15.伊勢本昇昭、保井美敏、金子治、佐野大作、成田修英,「格子状地盤改良杭(Head Lock Pile)工法の開発その1 工法の概要および載荷試験による性能確認」。
    16.佐野大作、伊勢本昇昭、金子治,「格子状地盤改良工法による基礎構造の合理化」。
    17.馬場崎亮一、青木雅路、河野貴歲、中野撤 (2000),「格子状地盤改良直接基礎の鉛直支持力-その1 遠心模擬実験による鉛直支持力の検討」。
    18.菅野高弘、中澤博志、初山幸治、舘下和行、仁田尾洋、鈴木亮彦,「X-jet(クロスジェット)工法を用いた格子状改良による滑走路直下での液状化対策効果」。
    19.李佳翰 (2001),「沉箱式碼頭受震引致土壤液化之數值模擬」,碩士論文,國立中央大學應用地質研究所,桃園。
    20.林資凱 (2001),「水力回填煤灰之動態特性」,碩士論文,國立中央大學土木工程學系,桃園。
    21.張志豪 (2011),「煤灰現地攪拌改良後之材料大地工程性質探討」,碩士論文,國立臺灣科技大學營建工程學系,台北。
    22.張紹綸 (2008),「孔隙水壓模式應用於液化影響樁基礎之波動方程分析」,碩士論文,私立淡江大學土木工程系,台北。
    23.陳銘鴻 (2002),「土壤液化成因、災害與復建」,台灣之活動斷層與地震災害研討會論文集,第107-123 頁。
    24.馮正一、蔡佩勳、李俊男 (2005),「鯉魚潭土石壩受到集集地震作用之動態反應分析」,中華水土保持學報,第37卷,第3期。
    25.黃俊鴻、林資凱、楊志文 (2003),「現地水力回填煤灰之液化強度特性」,中國土木水利工程學刊,第15卷,第2期,第241-252頁。
    26.黃俊鴻、陳正興 (1992),「土壤受反覆剪應力作用之孔隙水壓激發模式」,中國土木水利工程學刊,第4 卷,第1 期,第59-70 頁。
    27.董少凡 (2008),「時域中土壤結構互制問題之有限元素分析」,碩士論文,國立成功大學土木工程學系,台南。
    28.鄒學維 (2010),「以三維數值模型分析格狀改良煤灰塘之承載行為」,碩士論文,國立臺灣科技大學營建工程學系,台北。
    29.廖洪鈞、陳福勝 (2006),「地盤改良設計施工及案例」,中華民國大地工程學會出版。
    30.劉國守 (2008),「液化路段路堤路基加勁配合垂直排水帶設計之研究」,碩士論文,國立朝陽科技大學營建工程學系,台中。
    31.鄭文隆,吳偉康 (1985),「土壤液化之災害型態與現地研判」,地工技術,第9 期,第91-103 頁。
    32.鄭世豪 (2004),「簡易橋墩基礎之地震反應分析」,碩士論文,私立淡江大學土木工程學系,台北。
    33.賴聖耀、陳志芳、林炳森、張文忠、張啟文、魏銘忠、鄭光廷 (2007),「現地模擬地震之液化試驗與馬頭動態監測研究」,交通部運輸研究所。
    34.簡逢佑 (2010),「以中層攪拌工法現地拌合煤灰與爐石水泥之成效分析」,碩士論文,國立臺灣科技大學營建工程學系,台北。

    QR CODE