簡易檢索 / 詳目顯示

研究生: 羅自皓
Tzu-Hao Lo
論文名稱: 窩形與錐形壓花鰭片的熱傳增強性能分析
Investigation of Dimple Fins and Cone Fins for Heat Transfer Enhancement
指導教授: 洪俊卿
Jin-Tsing Hong
口試委員: 林顯群
Sheam-Chyun Lin
陳恩宗
En-Tsung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 159
中文關鍵詞: 窩形鰭片熱交換器數值分析
外文關鍵詞: Dimple fins, Heat exchanger, Numerical analysis
相關次數: 點閱:194下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用計算流體力學應用在鰭片式熱交換器之流道作熱流特性分析,分析鰭片包含窩形流道的三種參數變化和改變流道型式的錐形流道,探討其幾何與熱傳效率及阻力關係。文中分兩大部分,先以窩形流道為主軸,探究窩形流道改變幾何參數後對於熱傳及流體的變動關係;接下來將表現優異的窩形流道,在保留參數和一般條件,以改變型式為錐形的情形下,來比較之間的差異性。
    增加窩形深度能加強熱傳,但是會使阻力上升;縮小窩形直徑熱傳會些微增加,不過阻力大幅上升,而窩形流道中窩形直徑與深度比為5時,擁有較佳的散熱效率。錐形設計較窩形能降低摩擦係數,由流場觀之錐形較窩形產生較小的渦流。實驗結果顯示窩形比錐形設計能有效的增加較大範圍的渦流,進而提高散熱效率。


    In this thesis using Computational Fluid Dynamics applications to discussed the heat transfer and flow performance for fin-type exchanger channel characterization. Investigations of dimples channel containing three parameters flow and changes patterns of the cones channel to analysis the geometry with heat transfer efficiency and resistance relationships. There have two part in this thesis, at first to study dimples channel which are changes geometric parameters for heat transfer and fluid in the relationship. Second, retain the outstanding performance of the dimples channel in general conditions then change the pattern for the cone case, and compare the differences between.
    Heat transfer can be enhanced by increase the depth of dimple-shaped, but the resistance will also increase. Narrow diameter of dimple-shaped that heat transfer will increase slightly, but increased the resistance too, and the dimple-shaped channel diameter and depth in the ratio of 5 have the best heat dissipation efficiency in this study. Cone-shaped design is lower than dimple-shaped of the coefficient friction. The cone-shaped vortex is smaller than the dimple-shaped vortex from streamline of view. The results show dimple-shaped can effectively increase the wide range of eddy current than cone-shaped design, thereby increasing the cooling efficiency.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 符號索引 XV 第一章 緒論 1 1.1 前言 1 1.2 散熱方式介紹 2 1.3 文獻回顧 3 1.4 研究動機 7 1.5 研究目的 7 1.6 研究方法 7 第二章 理論基礎 9 2.1 流場基本分析 9 2.1.1 質量守恆方程式(Mass conservation equation) 10 2.1.2 動量守恆方程式(Momentum conservation equation) 10 2.1.3 能量守恆方程式(Energy conservation equation) 11 2.1.4 流場基本假設 12 2.1.5 初始值和邊界條件 13 2.1.5 邊界層分析 14 2.1.6 層流 16 2.1.7 紊流 16 2.2 無因次參數分析 16 2.2.1 雷諾數(Re) 16 2.2.2 對數平均溫差(Log Mean Temperature Difference) 17 2.2.3 對流熱傳係數(Convection heat transfer, h ̅) 20 2.2.4 紐森數(Nu) 21 2.2.5 摩擦係數 22 第三章 CFD應用方法 24 3.1 計算流體力學方法 24 3.1.1 有限體積法(FVM) 24 3.1.2 SIMPLE法 25 3.1.3 CFD之數值模型 26 3.2 CFD軟體結構 27 3.2.1 計算流程 27 3.2.2 前處理 29 3.2.3 求解器 30 3.2.4 後處理 31 3.3 數值流場計算 31 3.3.1 網格劃分 31 3.3.2 離散方程 33 3.3.3 紊流模型 34 3.3.4 壁函數 42 3.4 計算步驟與分析 43 3.4.1 模型介紹 43 3.4.2 模型計算 44 3.4.3 收斂條件 45 3.4.4 網格測試 45 3.5 驗證 46 第四章 窩形壓花鰭片熱傳特性分析 48 4.1 模型介紹 48 4.1.1 幾何參數 49 4.1.2 模型邊界條件 50 4.2 計算區域 52 4.3 網格測試 54 4.4 結果與討論 58 4.5.1 層流 59 4.5.2 紊流 88 第五章 錐形壓花鰭片熱傳特性分析 117 5.1 模型介紹 117 5.2 區域計算與網格測試 119 5.3 結果與討論 122 5.3.1 層流 122 5.3.2 紊流 132 第六章 綜合結果與應用 148 6.1 窩形與錐形流道比較 148 6.2 結論 152 6.3 應用與未來展望 154 參考文獻 158

    [1] Courant, R. “Variational methods for the solution of problems of equilibrium and vibrations”, LECTURE NOTES IN PURE AND APPLIED, (1943).

    [2] 馮康,「基于變分原理的差分格式」,應用數學與計算數學,第四期,(1965)。

    [3] Caretto, L.S., Gosman, A. D., Patankar, S. V. and Spalding, D. B., “Two calculation procedures for steady, three-dimensional flows with recirculation”, in Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics Lecture Notes in Physics, (1972).

    [4] Caretto, L.S., Curr, R. M., and Spalding, D. B., “Two numerical methods for three-dimensional boundary layer”, Computational Methods Application Mechanical Engineering, (1972).

    [5] Baker, A.J., “Finite element solution theory for three-dimensional boundary layer,” AIAA Journal,7,(1974).

    [6] Patankar, S.V., Rafinejda, D. and Spalding, D.B. “Calculation of three-dimmensional boundary layer with solution of all three momentum equations”, Computational Methods Application Mechanical Engineering, (1975).

    [7] Patankar, S.V., and Spalding, D.B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, Int. J. Heat Mass Transfer, PP. 1787–1805, (1972).

    [8] Patankar, S.V., and Spalding, D.B., “Fluid flow and heat transfer in three-dimensional duct flows ”, International Journal Heat and Mass Transfer, (1976).

    [9] Danesh K.T.C., Brian Vick, Saad Ragab, “Computations of Flow Structures and Heat Transfer in a Dimpled Channel at Low to Moderate Reynolds Number”, Master of Science In Mechanical Engineering, (2005).

    [10]Gong-Nan Xie, Qiu-Wang Wang, Min Zeng and Lai-Qin Luo, “Numerical investigation of heat transfer and fluid flow characteristics inside a wavy channel”, Heat Mass Transfer, 43, PP.603-611,(2006).

    [11] Grenard, Quintilla-Larroya, V., E. Laroche, “Numerical Study of Heat Transfer on a Dimpled Surface with CEDRE code”, 2nd European Conferance For Aerospace Sciences, (2007).

    [12]Elyyan,M.A., Ali Rozati, Tafti,D.K., “Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers”, International Journal of Heat and Mass Transfer (2008).

    [13] Afanasyev, V.N., Chudnovsky, Ya.P., Leontiev, A.I., Roganov, P.S., “Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate”, Experimental Thermal and Fluid Science (1993).

    [14] Ligrani, P.M., Oliveira, M.M., Blaskovich, T., “Comparison of heat transfer augmentation techniques”, AIAA journal, PP.337-362, (2003).

    [15] Launder B.E., and Spalding, D.B., “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering 3, PP.269-289, (1974).

    [16] MILLS, A.F., Heat Transfer ,Pearson Education Taiwan Ltd, (2005).

    [17] 江帆,黃鵬,Fluent 高級應用與實例分析,清華大學出版社,北京,(2008)。

    [18] 吳清河,「波浪形鰭片熱交換器之鰭片在開洞及其非開洞下的熱傳特性分析」,國立台灣科技大學機械工程研究所碩士論文,(2010)。

    [19] 蕭弘清,「LED電子構裝散熱技術」,專題研究報告,國立台灣科技大學電機工程系,(2011)。

    QR CODE