簡易檢索 / 詳目顯示

研究生: BADRIL AZHAR
BADRIL AZHAR
論文名稱: 介孔銅-沒食子酸金屬有機骨架的合成及其在染料吸附中的應用研究
A Study on Synthesis of Mesoporous Copper–Gallic Acid Metal-Organic Framework and Its Application for Dyes Adsorption
指導教授: 朱義旭
Yi-Hsu Ju
Artik Elisa Angkawijaya
Artik Elisa Angkawijaya
口試委員: Alchris Woo Go
Alchris Woo Go
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 67
中文關鍵詞: 吸附染料沒食子酸金屬有機骨架無溶劑合成
外文關鍵詞: Adsorption, Dyes, Gallic acid, Metal−organic framework, Aqueous synthesis
相關次數: 點閱:241下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出了一種無溶劑的合成方法來合成介孔的銅-沒食子酸金屬有機骨架(CuGA MOF)。採用各種參數來合成具有與使用DMF合成CuGA NMOF相當的理化特性的CuGA MOF。本研究探討了在NaOH:GA摩爾比為1.1至4.4以及反應溫度為30、60和90°C的不同條件下,其對CuGA MOF的特性和吸附效率的影響。發現適當添加NaOH對於抑制氧化銅的產生和優化CuGA MOF的產生是必不可少的。此外也發現適當添加NaOH對於抑制氧化銅的產生及最適化CuGA MOF的產生至關重要。另一方面,發現反應溫度對於CuGA MOF的吸附效率和穩定性影響很大。在90°C的反應溫度下,用摩爾比為2.2的NaOH:GA和CuGA MOF進行合成,生成表面積為198.22 m2 / g 的介孔MOF(CuGA 90-2.2)。 MOF也顯示出對於吸附剛果紅(Qmax = 344.54 mg / g)和亞甲基藍(Qmax = 124.64 mg / g)具有高度的潛力 。即使經過5次吸附-脫附的循環,仍具有很強的吸附能力(> 90%),證明了合成的CuGA 90-2.2具有可重複使用性。即使經過5個吸附-解吸循環,它仍然具有很強的吸附性能(> 90%),這證明了合成的CuGA 90-2.2的可重複使用性。


In this thesis, an aqueous synthesis method was developed to synthesize the mesoporous copper-gallic acid metal-organic framework (CuGA MOF). Various synthesis parameters were employed to generate CuGA MOF with commensurable physicochemical characteristics as the DMF-synthesized CuGA NMOF. This study explored the effect of the NaOH:GA molar ratio (1.1 to 4.4) and the reaction temperature (30, 60, and 90 ° C) to the characteristic and adsorption efficiency of CuGA MOF. Adequate addition of NaOH was found to be crucial to suppress copper oxide generation and optimize CuGA MOF generation. On the other side, the reaction temperature was shown to significantly affect the adsorption efficiency and stability of CuGA MOF. The CuGA MOF synthesized with NaOH:GA molar ratio of 2.2, at reaction temperature of 90°C, generated mesoporous MOF (CuGA 90-2.2) with 198.22 m2/g surface area. The MOF demonstrated an exceptional potential to adsorb congo red (Qmax= 344.54 mg/g) and methylene blue (Qmax= 124.64 mg/g). The reusability of the synthesized CuGA 90-2.2 demonstrated by the strong adsorption performance (>90%) even after 5 adsorption-desorption cycle.

摘要............................................................................iv ABSTRACT........................................................................v ACKNOWLEDGEMENT.................................................................vi TABLE OF CONTENT................................................................vii LIST OF TABLES..................................................................ix LIST OF FIGURES.................................................................x CHAPTER 1 1.1. Background..............................................................1 1.2. Goal and Objectives.....................................................3 CHAPTER 2 2.1. Metal-Organic Framework.................................................4 2.1.1 Synthesis of MOF........................................................4 2.1.2. Challenge in BioMOFs research...........................................8 2.1.3. Applications of Mesoporous MOFs.........................................8 2.2. Metal Ions..............................................................11 2.3. Gallic Acid.............................................................11 2.4. Dyes....................................................................13 2.4.1. Methylene Blue..........................................................14 2.4.2. Congo Red...............................................................14 2.5. Adsorption..............................................................15 2.5.1. Adsorption Isotherm.....................................................17 2.5.2. Thermodynamics Adsorption...............................................22 2.5.3. Factors Affecting Adsorption............................................22 CHAPTER 3 3.1. Materials...............................................................24 3.2. Equipment and instruments...............................................25 3.3. Experimental procedures.................................................25 3.3.1 Synthesis of Cu-GA MOF....................................................26 3.4. Characterization techniques.............................................27 3.4.1. Adsorption Study........................................................28 3.4.2. Desorption..............................................................29 CHAPTER 4 4.1. Molar ratio of NaOH to GA influence on the CuGA MOF traits..............31 4.2. Temperature influence on CuGA MOF traits................................33 4.3. CuGA MOF Characterization...............................................34 4.4. Initial pH influence on dye adsorption using CuGA 90-2.2................37 4.5. Adsorption Isotherm.....................................................38 4.6. Adsorption Thermodynamics...............................................44 4.7. Desorption..............................................................45 4.8. Reusability.............................................................45 CONCLUSION......................................................................47 REFERENCES......................................................................48 SUPPLEMENTARY DATA..............................................................56  

1. Weststrate, J., et al., The sustainable development goal on water and sanitation: learning from the millennium development goals. 2019. 143(2): p. 795-810.
2. Snyder, S.A., et al., Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. 2003. 20(5): p. 449-469.
3. Hu, J., et al., Enhanced adsorptive removal of hazardous anionic dye “congo red” by a Ni/Cu mixed-component metal–organic porous material. RSC Advances, 2014. 4(66): p. 35124-35130.
4. Gupta, V.K., et al., Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C, 2011. 31(5): p. 1062-1067.
5. Liu, L., et al., Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. Journal of Chemical and Engineering Data, 2015. 60(5): p. 1270-1278.
6. Nodehi, R., H. Shayesteh, and A.R. Kelishami, Enhanced adsorption of congo red using cationic surfactant functionalized zeolite particles. Microchemical Journal, 2020. 153: p. 104281.
7. Khaniabadi, Y.O., et al., Adsorption of congo red dye from aqueous solutions by montmorillonite as a low-cost adsorbent. International Journal of Chemical Reactor Engineering, 2017. 16(1).
8. Ariyanti, D., M. Maillot, and W.J.J.o.e.c.e. Gao, Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation. 2018. 6(1): p. 539-548.
9. Vandevivere, P.C., et al., Treatment and reuse of wastewater from the textile wet‐processing industry: Review of emerging technologies. 1998. 72(4): p. 289-302.
10. Jia, J., et al., Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. 2019. 5(1): p. 180-191.
11. Dissegna, S., et al., Using water adsorption measurements to access the chemistry of defects in the metal–organic framework UiO-66. 2017. 19(29): p. 4137-4141.
12. Haque, E., J.W. Jun, and S.H.J.J.o.H.m. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). 2011. 185(1): p. 507-511.
13. Khan, N.A., et al., Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. 2015. 282: p. 194-200.
14. Mirsoleimani-azizi, S.M., et al., Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies. 2018. 6(5): p. 6118-6130.
15. Jamali, A., et al., Lanthanide metal–organic frameworks as selective microporous materials for adsorption of heavy metal ions. 2016. 45(22): p. 9193-9200.
16. Abbasi, A.R., M. Karimi, and K. Daasbjerg, Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrasonics Sonochemistry, 2017. 37: p. 182-191.
17. Badhani, B., N. Sharma, and R. Kakkar, Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 2015. 5(35): p. 27540-27557.
18. Kahkeshani, N., et al., Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian journal of basic medical sciences, 2019. 22(3): p. 225-237.
19. Sharma, S., et al., Copper-Gallic Acid Nanoscale Metal–Organic Framework for Combined Drug Delivery and Photodynamic Therapy. ACS Applied Bio Materials, 2019. 2(5): p. 2092-2101.
20. Kim, T.H. and S.G. Kim, Clinical Outcomes of Occupational Exposure to N,N-Dimethylformamide: Perspectives from Experimental Toxicology. Safety and Health at Work, 2011. 2(2): p. 97-104.
21. Angkawijaya, A.E., et al., Cu(II), Co(II), and Ni(II)–Antioxidative Phenolate–Glycine Peptide Systems: An Insight into Its Equilibrium Solution Study. Journal of Chemical & Engineering Data, 2012. 57(12): p. 3443-3451.
22. Fazary, A.E., et al., Complex Formation Between Ferric(III), Chromium(III), and Cupric(II) Metal Ions and (O,N) and (O,O) Donor Ligands with Biological Relevance in Aqueous Solution. Journal of Solution Chemistry, 2011. 40(12): p. 1965-1986.
23. McGuire, C.V. and R.S. Forgan, The surface chemistry of metal–organic frameworks. Chemical Communications, 2015. 51(25): p. 5199-5217.
24. Chen, X., et al., Metal-Organic Framework-based Phase Change Materials for Thermal Energy Storage. Cell Reports Physical Science, 2020. 1(10): p. 100218.
25. Dey, C., et al., Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. 2014. 70(1): p. 3-10.
26. Sun, Y., H.-C.J.S. Zhou, and t.o.a. materials, Recent progress in the synthesis of metal–organic frameworks. 2015. 16(5): p. 054202.
27. Klinowski, J., et al., Microwave-assisted synthesis of metal–organic frameworks. 2011. 40(2): p. 321-330.
28. Xu, Y., et al., Metal-organic frameworks for direct electrochemical applications. 2018. 376: p. 292-318.
29. Masoomi, M.Y. and A.J.U.s. Morsali, Sonochemical synthesis of nanoplates of two Cd (II) based metal–organic frameworks and their applications as precursors for preparation of nano-materials. 2016. 28: p. 240-249.
30. Laudise, R.A.J.y.P.i.C.G., Hydrothermal synthesis of crystals. 1987: p. 185.
31. Ivanova, I.I., et al., Time‐Resolved In Situ MAS NMR Monitoring of the Nucleation and Growth of Zeolite BEA Catalysts under Hydrothermal Conditions. 2017. 129(48): p. 15546-15549.
32. Markov, I.V., Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy. 2003: World scientific.
33. Jhung, S.H., et al., Selective crystallization of CoAPO-34 and VAPO-5 molecular sieves under microwave irradiation in an alkaline or neutral condition. 2005. 80(1-3): p. 147-152.
34. Jhung, S.H., et al., Crystal morphology control of AFI type molecular sieves with microwave irradiation. 2004. 14(2): p. 280-285.
35. Hwang, Y.K., et al., Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. 2005. 44(4): p. 556-560.
36. Kerner, R., O. Palchik, and A.J.C.o.m. Gedanken, Sonochemical and microwave-assisted preparations of PbTe and PbSe. A comparative study. 2001. 13(4): p. 1413-1419.
37. Xu, Y.P., et al., Microwave‐enhanced ionothermal synthesis of aluminophosphate molecular sieves. 2006. 45(24): p. 3965-3970.
38. Chen, D., et al., Preparation of Fe (III)-MOFs by microwave-assisted ball for efficiently removing organic dyes in aqueous solutions under natural light. 2019. 135: p. 63-67.
39. Lin, A., et al., Palladium Nanoparticles Supported on Ce-Metal–Organic Framework for Efficient CO Oxidation and Low-Temperature CO2 Capture. 2017. 9(21): p. 17961-17968.
40. Jhung, S.-H., J.-H. Lee, and J.-S.J.B.o.t.K.C.S. Chang, Microwave synthesis of a nanoporous hybrid material, chromium trimesate. 2005. 26(6): p. 880-881.
41. Lu, C.-M., et al., Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. 2010. 156(2): p. 465-470.
42. Schlesinger, M., et al., Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2 (btc) 3 (H2O) 3] and [Cu2 (btc)(OH)(H2O)]. 2010. 132(1-2): p. 121-127.
43. Mueller, U., et al., Method for electrochemical production of a crystalline porous metal organic skeleton material. 2011, Google Patents.
44. Mueller, U., et al., Metal–organic frameworks—prospective industrial applications. 2006. 16(7): p. 626-636.
45. Richter, I., M. Schubert, and U. Müller, Porous metal organic framework based on pyrroles and pyridinones. 2009, Google Patents.
46. Qiu, L.-G., et al., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. 2008(31): p. 3642-3644.
47. Bang, J.H. and K.S.J.A.m. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. 2010. 22(10): p. 1039-1059.
48. Anumah, A., et al., Metal-Organic Frameworks (MOFs): Recent Advances in Synthetic Methodologies and Some Applications. 2019. 3(3): p. 283-305.
49. Suslick, K.S., et al., Sonochemical synthesis of amorphous iron. 1991. 353(6343): p. 414-416.
50. Gedanken, A.J.U.s., Using sonochemistry for the fabrication of nanomaterials. 2004. 11(2): p. 47-55.
51. Zacher, D., et al., Liquid‐Phase Epitaxy of Multicomponent Layer‐Based Porous Coordination Polymer Thin Films of [M (L)(P) 0.5] Type: Importance of Deposition Sequence on the Oriented Growth. 2011. 17(5): p. 1448-1455.
52. Cai, H., Y.-L. Huang, and D.J.C.C.R. Li, Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. 2019. 378: p. 207-221.
53. Rojas, S., T. Devic, and P.J.J.o.M.C.B. Horcajada, Metal organic frameworks based on bioactive components. 2017. 5(14): p. 2560-2573.
54. Su, H., et al., A highly porous medical metal–organic framework constructed from bioactive curcumin. 2015. 51(26): p. 5774-5777.
55. Levine, D.J., et al., Olsalazine-based metal–organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. 2016. 138(32): p. 10143-10150.
56. Miller, S.R., et al., A rare example of a porous Ca-MOF for the controlled release of biologically active NO. 2013. 49(71): p. 7773-7775.
57. Gopalsamy, K. and V. Subramanian, Carbon flakes based metal organic frameworks for H2, CH4 and CO2 gas storage: a GCMC simulation study. New Journal of Chemistry, 2018. 42(6): p. 4240-4250.
58. Xuan, W., et al., Mesoporous metal–organic framework materials. 2012. 41(5): p. 1677-1695.
59. Yuan, S., et al., Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017. 8(1): p. 15356.
60. Ahluwalia, R.K., T. Hua, and J.J.I.j.o.h.e. Peng, On-board and off-board performance of hydrogen storage options for light-duty vehicles. 2012. 37(3): p. 2891-2910.
61. Robson, R.J.D.T., Design and its limitations in the construction of bi-and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. 2008(38): p. 5113-5131.
62. Kaskel, S., The Chemistry of Metal-Organic Frameworks, 2 Volume Set: Synthesis, Characterization, and Applications. Vol. 1. 2016: John Wiley & Sons.
63. Nouar, F., et al., Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. 2008. 130(6): p. 1833-1835.
64. Düren, T., Y.-S. Bae, and R.Q.J.C.S.R. Snurr, Using molecular simulation to characterise metal–organic frameworks for adsorption applications. 2009. 38(5): p. 1237-1247.
65. Cychosz, K.A., R. Ahmad, and A.J.J.C.S. Matzger, Liquid phase separations by crystalline microporous coordination polymers. 2010. 1(3): p. 293-302.
66. Wang, D., et al., Mesoporous Hexanuclear Copper Cluster-Based Metal–Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules. 2018. 10(37): p. 31233-31239.
67. Gu, Z.Y. and X.P.J.A.C.I.E. Yan, Metal–organic framework MIL‐101 for high‐resolution gas‐chromatographic separation of xylene isomers and ethylbenzene. 2010. 49(8): p. 1477-1480.
68. Corma, A., H. García, and F.J.C.r. Llabrés i Xamena, Engineering metal organic frameworks for heterogeneous catalysis. 2010. 110(8): p. 4606-4655.
69. Khaletskaya, K., et al., Integration of porous coordination polymers and gold nanorods into core–shell mesoscopic composites toward light-induced molecular release. 2013. 135(30): p. 10998-11005.
70. Keskin, S., S.J.I. Kızılel, and E.C. Research, Biomedical applications of metal organic frameworks. 2011. 50(4): p. 1799-1812.
71. Taylor-Pashow, K.M., et al., Postsynthetic modifications of iron-carboxylate nanoscale metal− organic frameworks for imaging and drug delivery. 2009. 131(40): p. 14261-14263.
72. Horcajada, P., et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. 2010. 9(2): p. 172-178.
73. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999. 402(6759): p. 276-279.
74. Zhang, X., et al., A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020. 49(20): p. 7406-7427.
75. Czaja, A.U., N. Trukhan, and U.J.C.S.R. Müller, Industrial applications of metal–organic frameworks. 2009. 38(5): p. 1284-1293.
76. Stupnišek-Lisac, E., A.L. Božić, and I.J.C. Cafuk, Low-toxicity copper corrosion inhibitors. 1998. 54(9): p. 713-720.
77. Kaur, R., et al., Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. 2019. 109: p. 124-133.
78. Tibbetts, I. and G.E.J.M. Kostakis, Recent bio-advances in metal-organic frameworks. 2020. 25(6): p. 1291.
79. Dhiman, S. and G. Mukherjee, Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era, in Recent Developments in Microbial Technologies. 2020, Springer. p. 163-202.
80. Silva, I., et al., Evaluation of cytotoxic, apoptotic, mutagenic, and chemopreventive activities of semi-synthetic esters of gallic acid. 2017. 105: p. 300-307.
81. Saines, P.J., et al., Detailed investigations of phase transitions and magnetic structure in Fe (III), Mn (II), Co (II) and Ni (II) 3, 4, 5-trihydroxybenzoate (gallate) dihydrates by neutron and X-ray diffraction. 2011. 40(24): p. 6401-6410.
82. Cooper, L., et al., A biocompatible porous Mg-gallate metal–organic framework as an antioxidant carrier. 2015. 51(27): p. 5848-5851.
83. Hidalgo, T., et al., Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. 2017. 5(15): p. 2813-2822.
84. Sharma, S., et al., Copper-gallic acid nanoscale metal–organic framework for combined drug delivery and photodynamic therapy. 2019. 2(5): p. 2092-2101.
85. Bao, Z., et al., Molecular Sieving of Ethane from Ethylene through the Molecular Cross‐Section Size Differentiation in Gallate‐based Metal–Organic Frameworks. 2018. 130(49): p. 16252-16257.
86. Ponce, A., et al., Elucidation of the Fe (III) gallate structure in historical iron gall ink. 2016. 88(10): p. 5152-5158.
87. Zhu, J., et al., M-Gallate (M= Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. 2019. 7(15): p. 12955-12963.
88. SUHAIMI, S.F.R.B.M., POTENTIAL OF OIL PALM LEAVES AS AN ADSORBENT FOR THE REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION. 2015, UNIVERSITI MALAYSIA PAHANG.
89. Li, Z., et al., Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. 2020. 388: p. 124263.
90. Sahoo, S.K., J.P. Dhal, and G.K.J.C.C. Panigrahi, Magnesium oxide nanoparticles decorated iron oxide nanorods: Synthesis, characterization and remediation of Congo red dye from aqueous media. 2020. 22: p. 100496.
91. Pignatello, J.J., B.J.E.s. Xing, and technology, Mechanisms of slow sorption of organic chemicals to natural particles. 1995. 30(1): p. 1-11.
92. Toth, J., Adsorption. 2002: CRC Press.
93. Lavrich, D.J., et al., Physisorption and chemisorption of alkanethiols and alkyl sulfides on Au (111). 1998. 102(18): p. 3456-3465.
94. Keller, J.U., R.J.G.A.E.E.M. Staudt, and A. Isotherms, Adsorption isotherms. 2005: p. 359-413.
95. Lennard-Jones, J.J.T.o.t.F.S., Processes of adsorption and diffusion on solid surfaces. 1932. 28: p. 333-359.
96. Wu, C., et al., Adsorption Isotherms of Low-Pressure H2O on a Low-Temperature Surface Measured by a Quartz Crystal Microbalance. 2020. 5(41): p. 26673-26681.
97. Elmorsi, T.M.J.J.o.E.P., Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. 2011. 2(06): p. 817.
98. Günay, A., E. Arslankaya, and I.J.J.o.h.m. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. 2007. 146(1-2): p. 362-371.
99. Ayawei, N., et al., Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. 2015. 5(03): p. 56.
100. Edet, U.A. and A.O.J.P. Ifelebuegu, Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. 2020. 8(6): p. 665.
101. Ayawei, N., et al., Adsorption of congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies. 2015. 31(3): p. 1307-1318.
102. Ringot, D., et al., In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. 2007. 98(9): p. 1812-1821.
103. Shahbeig, H., et al., A new adsorption isotherm model of aqueous solutions on granular activated carbon. 2013. 9(4): p. 243-254.
104. Angkawijaya, A.E., et al., Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant. 2020: p. 123130.
105. Koble, R.A., T.E.J.I. Corrigan, and E. Chemistry, Adsorption isotherms for pure hydrocarbons. 1952. 44(2): p. 383-387.
106. Podder, M.S. and C.B. Majumder, Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis. Composite Interfaces, 2016. 23(4): p. 327-372.
107. Benzaoui, T., et al., Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. 2018. 36(1-2): p. 114-129.
108. Preiß, T., et al., Kinetic analysis of the uptake and release of fluorescein by metal-organic framework nanoparticles. 2017. 10(2): p. 216.
109. Hamdaoui, O.J.J.o.h.m., Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. 2006. 135(1-3): p. 264-273.
110. Czikkely, M., et al., Review of heavy metal adsorption processes by several organic matters from wastewaters. 2018. 10(10): p. 1377.
111. Ahmaruzzaman, M. and S. Laxmi Gayatri, Batch adsorption of 4-nitrophenol by acid activated jute stick char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2010. 158(2): p. 173-180.
112. Chen, K. and D.J.C. Xue, pH-assisted crystallization of Cu 2 O: chemical reactions control the evolution from nanowires to polyhedra. 2012. 14(23): p. 8068-8075.
113. Fazary, A.E., et al., Complex formation between ferric (III), chromium (III), and cupric (II) metal ions and (O, N) and (O, O) donor ligands with biological relevance in aqueous solution. 2011. 40(12): p. 1965-1986.
114. Wolfenden, B.S. and R.L.J.J.o.t.C.S. Willson, Perkin Transactions 2, Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). 1982(7): p. 805-812.
115. Haas, K.L. and K.J.J.C.r. Franz, Application of metal coordination chemistry to explore and manipulate cell biology. 2009. 109(10): p. 4921-4960.
116. Sing, K.S., R.T.J.A.S. Williams, and Technology, Physisorption hysteresis loops and the characterization of nanoporous materials. 2004. 22(10): p. 773-782.
117. Cychosz, K.A., et al., Recent advances in the textural characterization of hierarchically structured nanoporous materials. 2017. 46(2): p. 389-414.
118. Ling, S., R.I. Walton, and B.J.M.S. Slater, Theoretical study of conformational disorder and selective adsorption of small organic molecules in the flexible metal-organic framework material MIL-53-Fe. 2015. 41(16-17): p. 1348-1356.
119. Ustunol, I.B., et al., pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. 2019. 554: p. 362-375.
120. Robati, D., et al., Effect of electrostatic interaction on the methylene blue and methyl orange adsorption by the pristine and functionalized carbon nanotubes. 2016. 83: p. 1-6.
121. Roterman, I. and L. Konieczny, Self-Assembled Molecules–New Kind of Protein Ligands: Supramolecular Ligands. 2017: Springer Nature.
122. Bonilla-Petriciolet, A., D.I. Mendoza-Castillo, and H.E. Reynel-Ávila, Adsorption processes for water treatment and purification. 2017: Springer.
123. Anah, L. and N. Astrini. Isotherm adsorption studies of Ni (II) ion removal from aqueous solutions by modified carboxymethyl cellulose hydrogel. in IOP Conf. Ser. Earth Environ. Sci. 2018.
124. Pearson, R.G.J.J.o.C.E., Hard and soft acids and bases, HSAB, part 1: Fundamental principles. 1968. 45(9): p. 581.
125. Pearson, R.G.J.J.o.t.A.C.s., Hard and soft acids and bases. 1963. 85(22): p. 3533-3539.
126. Pradhan, A.C., A. Paul, and G.R.J.J.o.C.S. Rao, Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@ Al 2 O 3− MCM-41 for methylene blue remediation. 2017. 129(3): p. 381-395.
127. Zhang, X., et al., Investigation of adsorption behavior of Cu2O submicro-octahedra towards Congo red. 2014. 2014.
128. Mohammadi, A., et al., Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions. International Journal of Environmental Science Technology, 2017. 14(9): p. 1959-1968.
129. Shen, T., et al., Hierarchically mesostructured MIL-101 metal–organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution. Journal of Environmental Chemical Engineering, 2015. 3(2): p. 1372-1383.
130. Shao, Y., et al., Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue. Chemical Engineering Journal, 2016. 283: p. 1127-1136.
131. He, J., et al., Highly efficient Fenton and enzyme-mimetic activities of NH 2-MIL-88B (Fe) metal organic framework for methylene blue degradation. Scientific Reports, 2018. 8(1): p. 1-8.
132. Pu, F., et al., Miniaturization of Metal–Biomolecule Frameworks Based on Stereoselective Self‐Assembly and Potential Application in Water Treatment and as Antibacterial Agents. Chemistry–A European Journal, 2012. 18(14): p. 4322-4328.
133. Wen, L., et al., Ice-templated porous polymer/UiO-66 monolith for Congo Red adsorptive removal. Arabian Journal of Chemistry, 2020. 13(6): p. 5669-5678.
134. Xu, Y., et al., Rapid magnetic solid‐phase extraction of Congo Red and Basic Red 2 from aqueous solution by ZIF‐8@ CoFe2O4 hybrid composites. Journal of Separation Science, 2016. 39(18): p. 3647-3654.
135. Zhu, H., et al., Magnetically recyclable Fe3O4/Bi2S3 microspheres for effective removal of Congo red dye by simultaneous adsorption and photocatalytic regeneration. Separation and Purification Technology, 2017. 179: p. 184-193.
136. Anfar, Z., et al., Combined methane energy recovery and toxic dye removal by porous carbon derived from anaerobically modified digestate. 2019. 4(5): p. 9434-9445.
137. Lineweaver, C.H. and C.A. Egan, The initial low gravitational entropy of the universe as the origin of design in nature, in Origin (s) of Design in Nature. 2012, Springer. p. 3-16.
138. Ben-Tal, N., et al., Association entropy in adsorption processes. 2000. 79(3): p. 1180-1187.
139. Chabani, M., A. Amrane, and A.J.C.E.J. Bensmaili, Kinetic modelling of the adsorption of nitrates by ion exchange resin. 2006. 125(2): p. 111-117.
140. Vakili, M., et al., Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. 2019. 224: p. 373-387.

QR CODE