簡易檢索 / 詳目顯示

研究生: 林韋杉
Wei-shan Lin
論文名稱: LSCF塗層於2205DSS高溫氧化及電性之作用
Effect of LSCF Protective Coating on the Oxidation and Electrical Properties of 2205DSS at High Temperature
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 周振嘉
Chen-chia Chou
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 137
中文關鍵詞: 固態氧化物燃料電池金屬雙極板高溫氧化ASR
外文關鍵詞: 2205 duplex stainless steel, Solid oxide fuel cell, Metallic Interconnects, High-temperature oxidation, Area specific resistance
相關次數: 點閱:222下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用2205雙相不銹鋼(2205DSS)作為固態氧化物燃料電池(SOFC)的雙極板材料,並以網印方式披覆La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)塗層,以及分別添加30 wt%、20 wt%、10 wt%、5 wt% Ag於LSCF中,再經氮氣氣氛高溫燒結後,探討2205LSCF的高溫氧化與電性行為及Ag於高溫電性的作用。實驗結果顯示,2205LSCF在1000℃氮氣氣氛燒結,LSCF相穩定且塗層與合金底材附著性良好。塗層與合金底材界面間僅生成較低電阻、單層且薄的Cr-Mn spinel氧化物。於800℃高溫氧化,2205LSCF中的2205DSS因有LSCF塗層的保護,可有效阻礙氧離子擴散通過塗層到達合金界面,降低氧化皮膜成長速率。500 ~ 750℃的電性量測結果顯示,2205LSCF的ASR值皆低於披覆La0.7Sr0.3MnO3 (LSM)的2205DSS的ASR值,2205DSS網印LSCF塗層的導電性優於LSM塗層。在長時間的ASR值量測,2205LSCF於750℃長時間的ASR值低於2205LSM於800℃長時間的ASR值。網印方式披覆LSCF塗層於2205DSS,適合作為金屬雙極板的保護材料。添加不同含量Ag的2205(LSCF-Ag)於500 ~ 750℃的ASR值皆大於2205LSCF於500 ~ 750℃的ASR值。因此使用網印方式披覆(LSCF-Ag)塗層,並不適合作為保護金屬雙極板的保護層材料。


Duplex stainless steel (2205DSS) are being considered as potential interconnect materials for SOFC. The protection layers, LSCF and LSCF-Ag, were chosen, and the electrical properties and oxidation resistance of coating layers on 2205DSS were examined. The LSCF layer was coated on 2205DSS (2205LSCF) by screen printing and was sintered at 1000℃. LSCF was sintered in N2 atmosphere without decomposition, and only a thin oxide layer formed between LSCF and the alloy. The reason was that the LSCF layer suppressed the reaction between oxygen and the alloy, resulting in the slower oxidation rate as compared with 2205DSS. The area specific resistance measurements at the range from 500℃ to 750℃ were conducted, and the result showed that the area specific resistance (ASR) of 2205LSCF was less than that of LSM-coated one, because LSCF has higher electronic conductivity. The results of ASR measurement at 750 as function of holding time implied that the lower ASR of 2205LSCF was due to the formation of Cr-Mn spinel only. The incorporation of Ag in the LSCF layer was found to be an ineffective way for the reduction of ASR over the entire range form 500℃ to 750℃. It is concluded that the LSCF-coated 2205DSS by screen printing is adequate for metallic interconnect.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 前言 1 第二章 文獻回顧 4 2.1 固態氧化物燃料電池介紹 4 2.1.1 固態氧化物燃料電池工作原理 4 2.1.2 電解質 5 2.1.3 陽極 7 2.1.4 陰極 9 2.1.5 雙極板 12 2.2 金屬雙極板與其改質方式 14 2.2.1 Cr基合金金屬雙極板 14 2.2.2 Fe基合金金屬雙極板 18 2.2.3 金屬雙極板改質 22 2.3 金屬雙極板的接觸電阻 37 第三章 實驗方法 39 3.1 實驗流程 39 3.2 試片製備 40 3.2.1 金屬雙極板準備及清洗 40 3.2.2 試片的名稱 41 3.3 LSCF膠體的製作和網印 42 3.3.1 LSCF、LSCF + Ag粉末製備 42 3.3.2 LSCF、LSCF + Ag膠體製備 46 3.3.3 LSCF、LSCF + Ag網印及燒結 46 3.4 氧化實驗 48 3.4.1 恆溫氧化實驗 48 3.4.2 熱循環氧化實驗 48 3.5 電阻量測 49 3.5.1 白金電極製備 49 3.5.2 電阻量測與設備 49 3.6 分析方法與設備 52 3.6.1 分析方法 52 3.6.2 分析設備 53 第四章 實驗結果與討論 54 4.1 溫度對2205LSCF燒結之作用 54 4.1.1 1050℃ 54 4.1.2 1000℃ 58 4.2 高溫恆溫氧化 64 4.2.1 氧化動力學 64 4.2.2 2205DSS 66 4.2.3 2205LSCF 76 4.3 高溫循環氧化 87 4.4 電阻量測 96 4.4.1 2205LSCF 96 4.4.2 長時間電阻量測 104 4.5 添加Ag對2205LSCF之作用 108 4.6 LSCF與LSM塗層對2205DSS之作用 121 第五章 結論 124 參考文獻 125 附錄A La0.6Sr0.4Co0.2Fe0.8O3配重計算 134 附錄B JCPDS參考資料 135 作者簡介 137

1. 王茹涵,“後石油時代-21世紀的能源新思維”,科學發展,423期,pp. 68-73 (2008)。
2. 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展,367期,pp. 30-33 (2003)。
3. 陳振源,“未來的綠色能源-燃料電池”,科學發展,391期,pp. 62-67 (2005)。
4. 王格華、艾德生,“新能源概論”,五南圖書出版公司,2008年3月。
5. S. de Souza, S.J Visco and L.C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature”, Solid State Ionics, Vol. 98, pp. 57 (1997).
6. S. de Souza, S.J Visco and L.C. De Jonghe, “Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte”, J. Electrochem.Soc., Vol. 144, pp. L35 (1997).
7. H. Ishihara, H. Matsuda and Y. Takita, “Doped LaGaO perovskite type oxide as a new oxide ionic conductor”, J. Am. Chem. Soc., Vol. 116, pp. 3801 (1994).
8. P. Kofstad, and R. Bredesen, “High temperature corrosion in SOFC environment”, Solid State Ionics, Vol. 52, pp. 69-75 (1992).
9. Y.D. Zhen, S.P. Jiang, S. Zhang and V. Tan, “Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society, Vol. 26, pp. 3253-3264 (2006).
10. C.L. Chu, J.Y. Wang and S. Lee, “Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering”, International Journal of Hydrogen Energy, Vol. 33, pp. 2536-2546 (2008).
11. D.J. Jan, C.T. Lin and C.F. Ai, “Structural characterization of La0.67Sr0.33MnO3 protective coatings for solid oxide fuel cell interconnect deposited by pulsed magnetron sputtering”, Thin Solid Films, Vol. 516, pp. 6300-6304 (2008).
12. J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba and T. Hashimoto, “Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3”, Solid State Ionics, Vol. 132, pp. 167-180 (2000).
13. A. Mai, V.A.C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stöver, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells Part I. Variation of composition”, Solid State Ionics, Vol. 176, pp. 1341-1350 (2005).
14. Z. Yang, “Recent advances in metallic interconnects for solid oxide fuel cells”, International Materials Reviews, Vol. 53, pp. 39-52 (2008).
15. S. McIntosh, and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chem. Rev., Vol. 104, pp. 4845-4865 (2004).
16. D. Stöver, H.P. Buchkremer and S. Uhlenbruck, “Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC)”, Ceramics International, Vol. 30, pp. 1107-1113 (2004).
17. B. Liu and Y. Zhang, “Status and prospects of intermediate temperature soid oxide fuel cells”, Journal of University of Science and Technology Beijing, Vol. 15, pp. 84-90 (2008).
18. S.W. Zha, C.R. Xia and G.Y. Meng, “Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells”, J. Power Sources, Vol. 115, pp. 44 (2003).
19. P.N. Huang and A. Petric, “Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium”, J. Electrochem. Soc., Vol. 143, pp. 1644 (1996).
20. P.J. Gellings and H.J.M. Bouwmeester, “The CRC Handbook of Solid State Electrochemistry”, CRC Press Inc., New York, pp. 402 (1997).
21. K. Hideto, Y. Someya and T. Yoshida et al., “Properties of Ni/YSZ cermet as anode for SOFC”, Solid State Ionics, Vol. 132, pp. 253 (2000).
22. A. Ringuedé, D. Bronine and J.R. Frade, “Assessment of Ni/YSZ anodes prepared by combustion synthesis”, Solid State Ionics, Vol. 146, pp. 219 (2002).
23. S.W. Zha, W. Rauch and M.L. Liu, “Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs”, Solid State Ionics, Vol. 166, pp. 241 (2004).
24. Y.H. Huang, R.I. Dass and Z.L. Xing et al., “Double perovskites as anode materials for solid-oxide fuel cells”, Science, Vol. 312, pp. 254 (2006).
25. N. Caillol, M. Pijolat and E. Siebert, “Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes”, Applied Surface Science, Vol. 253, pp.4641-4648 (2007).
26. A. Hammouche, E. Siebert and A. Hammou, “Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells” Materials Research Bulletin, Vol. 24, pp. 367-380 (1989).
27. J. Mizusakia, Y. Yonemurab, H. Kamatab, K. Ohyamab,N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya ,T. Sasamoto , H. Inaba and T. Hashimoto, “Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3”, Solid State Ionics, Vol. 132, pp. 167-180 (2000).
28. Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio and Y. Esaki, “Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells”, Solid State Ionics, Vol. 118, pp. 187-194 (1999).
29. Y. Teraoka, H.M. Zhang, S. Furukawa and N. Yamazoe, “Oxygen permeation through perovskite-type oxides”, Chem. Lett., Vol. 46, pp. 1743–1746 (1985).
30. V.V. Kharton, A.A. Yaremchenko and E.N. Naumovich, “Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides”, J. Solid State Electrochem., Vol. 3, pp. 303 (1999).
31. H. Uchida, S. Arisaka and M. Watanabe, “High performance electrode for medium-temperature solid oxide fuel cells. La(Sr)CoO cathode with ceria interlayer on zirconia electrolyte”, Electrochem. Solid-State Lett., Vol. 2, pp. 428-430 (1999).
32. F. Tietz, V.A.C. Haanappel, A. Mai, J. Mertens and D. Stöver, “Performance of LSCF cathodes in cell tests”, Journal of Power Sources, Vol. 156, pp. 20-22 (2006)
33. W.X. Chen, T.L. Wen and H.W. Nie et al., “Study of Ln0.6Sr0.4Co0.8Mn0.2O3- (Ln=La, Gd, Sm or Nd) as the cathode materials for intermediate temperature SOFC”, Mater. Res. Bull., Vol. 38, pp. 1319 (2003).
34. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys”, Journal of Power Sources, Vol. 171, pp. 652-662 (2007).
35. D.B. Meadowcroft, International Conference on Strontium Containing Compounds, pp. 119 (1973)
36. W.Z. Zhu and S.C. Deevi, “Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering A, Vol. 387, pp. 227-243 (2003).
37. S.P. Tolochko, I.F. Kononyuk and L.S. Ivashkevich., Neorg. Mater., Vol. 20, pp. 1892 (1980).
38. P.P. Zhuk, A.A. Vecher, V.V. Samokhval, E.N. Naumovich and A.P. Viskup., Neorg. Mater., Vol. 24, pp. 105 (1988).
39. I.F. Kononyuk, S.P. Tolochko and N.G. Surmach., Neorg. Mater., Vol. 22, pp. 98 (1986).
40. H.U. Anderson, R. Murphy, K. Humphrey, B. Rossing, A. Aldred, W.L. Procarioue and R.J. Ackermann., The Rare Earths in Modern Science and Technology, pp. 55 (1978).
41. T.R. Armstrong, J.S. Hardy, S.P. Simner and J.W., Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells, pp. 706 (1999).
42. T.R. Armstrong, J.W. Stevenson, L.R. Pederson and P.E. Raney., “Dimensional instability of doped lanthanum chromite”, J. Electrochem. Soc., Vol. 143, pp. 2919 (1996).
43. N. Sakai, T. Kawada, H. Yokokamo, M. Dokiya and T. Iwata., “Thermal expansion of some chromium deficient lanthanum chromites”, Sol. Stat. Ion., pp. 394 (1990).
44. H. Yokokawa, N. Sakai and M. Dokiya., “Chemical thermodynamic considerations in sintering of LaCrO-based perovskites”, J. Electrochem. Soc., Vol. 138, pp. 1018 (1991).
45. L. Jian, P. Jian, H. Bing and G. Xie, “Oxidation kinetics of Haynes 230 alloy in air at temperatures between 650 and 850℃”, Journal of Power Sources, Vol. 159, pp. 641-645 (2006).
46. W.J. Qudakkers, H. Greiner and W. Kock, Proceedings of the First European Solid Oxide Fuel Cell Forum, Vol. 1, pp. 525 (1994).
47. G.V. Samsonovin., The Oxide Handbook, pp 125 (1973).
48. R. Bredesen and P. Kofstad, Proceedings of Second European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 567 (1996).
49. P. Kofstad, Proceedings of Second European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 479 (1996).
50. J. Urbanek, M. Miller, H. Schmidt and K. Llipert, Proceedings of Fourth European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 503 (2000).
51. Y. Matsuzaki and I. Yasuda, “Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes”, Journal of the electrochemical society, Vol. 148, pp. 126 (2001).
52. W.J. Quadakkers, T. Malkow and P. Albellan, Proceedings of Fourth European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 827 (2000).
53. M. Ueda and H. Taimatsu, Proceedings of Fourth European Solid Oxide Fuel Cell Forum, Vol. 2, pp. 837 (2000).
54. Z. Yang, J.S. Hardy, M.S. Walker, G. Xia, S.P. Simner, and J.W. Stevenson, “Structure and Con- ductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnect Applications”, Journal of The Electrochemical Society, Vol. 151, pp.1825-1831 (2004).
55. Shujiang Geng, Jiahong Zhu, Michael P. Brady, Harlan U. Anderson, Xiao-Dong Zhou, Zhenguo Yang, “A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 172, pp. 775-781 (2007).
56. 李美栓,金屬的高溫腐蝕,冶金工業出版社,(2001)。
57. F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel and S. Perrier, “Effect of yttrium addition by sol-gel coating and ion implantation on the high temperature oxidation behaviour of the 304 steel”, Applied Surface Science, Vol. 199, pp. 107-122 (2002).
58. W. Qu, L. Jian, D.G. Ivey, and J.M. Hill, “Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects”, Journal of Power Sources, Vol. 157, pp. 335-350 (2006).
59. H.S. Seo, G. Jin, J.H. Jun, D.H. Kim and K.Y. Kim, “Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect”, Journal of Power Sources, Vol. 178, pp. 1-8 (2008).
60. P.Y. Hou and J. Stringer, “The effect of reactive element additions on the selective oxidation,growth and adhesion of chromia scales”, Materials Science and Engineering A, pp. 1-10 (1995).
61. Z. Yang, G.G. Xia, G.D. Maupin and J.W. Stevenson, “Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications”, Surface and Coatings Technology, Vol. 201, pp. 4476-4483 (2006).
62. Z. Yang, G. Xia, S.P. Simner and J.W. Stevenson, “Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects”, J. Electrochem. Soc., Vol. 152, pp. A1896 (2005).
63. Z. Lu and J. Zhu, “Electrical Conductivity of the Manganese Chromite Spinel Solid Solution”, J. Am. Ceram. Soc., Vol. 88, pp. 1050-1053 (2005).
64. P. Wei, X. Deng, M.R. Bateni and A. Petric, “Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells”, Corrosion, Vol. 63, No. 6, pp. 6 (2007).
65. J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn and W.H. Yoon, “Oxidation Resistance Coating of LSM and LSCF on SOFC Metallic Interconnects by the Aerosol Deposition Process”, J. Am. Ceram. Soc. Vol. 90 pp. 1926-1929 (2007).
66. C. Lee and J. Bae, “Oxidation-resistant thin film coating on ferrite stainless steel by spuyyering for solid oxide fuel cells”, Thin Solid Films, Article in Press, (2008).
67. Z. Yang, G.G. Xia, G.D. Maupin, and J.W. Stevenson, “Evaluation of Perovskite Overlay Coating on Ferritc Stainless Steels for SOFC Interconnect Applications”, Journal of The Electrochemical Society, Vol. 153, pp. A1852-A1858 (2006).
68. 陳姿伶,預鍍銀層於2205-LSM高溫電性之作用,國立台灣科技大學機械研究所碩士學位論文,民國96年7月。
69. W.Z. Zhu and S.C. Deevi, “Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Vol. 38, pp. 957-972 (2003).
70. 呂駿嶸,固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究,國立台灣科技大學機械研究所碩士學位論文,民國95年7月。
71. 甘世暄,以鑭鐠鍶鈷鐵氧化物作為固態氧化物燃料電池陰極之研究,國立台灣科技大學機械研究所碩士學位論文,民國96年7月。
72. 汪建民,“粉末冶金技術手冊”,中華民國粉末冶金協會,1994年。
73. W. Qu, L. Jian, J. M. Hill and D. Ivey, “Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects”, Journal of Powers Sources, Vol. 153, pp. 114-124 (2006).
74. N. Birks and G.H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, London (1983).
75. R.A Perkins, “Environmental Degradation of High Temperature Materials”, Series 3, No. 13, Vol. 2, 1980, pp. 5/1.
76. M. Stanislowski, J. Froitzheim, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, “Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings”, Journal of Power Sources, Vol. 164, pp. 578-589 (2007).
77. W. Qu, L. Jian, J.M. Hill, D.G. Ivey, “Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects”, Journal of Power Sources, Vol. 153, pp. 114-124 (2006).
78. T.L. Markin, Power Sources, Vol. 4, Oriel, New York, pp. 586 (1973).
79. 陳文照,曾春風,游信和,“材料科學工程”,高立圖書有限公司,民國89年7月。
80. S.P. Jiang and Y. Zhen, “Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells”, Solid State Ionics, Article in Press (2008).
81. L.W. Tai, M.M Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, “Structure and electrical properties La1-xSrxCo1-yFeyO3”, Solid State Ionics, vol. 76, pp. 259-271 (1995).

QR CODE