簡易檢索 / 詳目顯示

研究生: 吳榮宸
Jung-Chen Wu
論文名稱: 酵素與無機觸媒之協同作用 於微生物燃料電池
Synergistic Action of Enzyme and Inorganic Catalyst in Microbial Fuel Cells
指導教授: 王丞浩
Chen-Hao Wang
王金燦
Chin-Tsan Wang
口試委員: 賴奇厚
Chyi-How Lay
郭俞麟
Yu-Lin Kuo
楊永欽
Yung-Chin Yang
陳洵毅
Hsun-Yi Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 209
中文關鍵詞: 酵素-觸媒微生物燃料電池廢水降解氧氣還原反應化學需氧量去除氧空缺生物膜
外文關鍵詞: Enzyme-catalyst microbial fuel cells (ECMFCs), wastewater degradation, oxygen reduction reaction (ORR), chemical oxygen demand (COD) removal, oxygen vacancy, biofilm
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於已知二氧化三鐵(Fe2O3)對催化劑的光化學反應具有良好的
影響,因此本研究一針對生物-電-芬頓微生物燃料電池使用三種不同
鍛燒溫度(500, 700, 900°C)來增強陰極光催化還原處理有機廢水。其
觀察到陰極電極材料中二氧化三鐵的最佳煅燒溫度為 500°C,產生最
大功率密度為 52.5 mW/m2,而陰極含油廢水的化學需氧量於一小時
其降解率達到 99.3%。
然而,光催化反應下的高溫環境會影響微生物的生長與代謝作用,
所以改用金屬氧化物四氧化三鐵和二氧化鈰觸媒對氧氣還原反應和
空缺結構具有良好的作用,實驗中通過多層製程將觸媒噴塗於極板
(碳布)修飾改善氧氣還原反應,再結合酵素與觸媒其具有較薄的生物
膜生成和晶格上的氧空位/缺陷位點,所有目的都是達到低成本且有
效處理有機廢水效益。
在這二項研究中,分別以四氧化三鐵觸媒提高廢水降解和混合型
酵素-觸媒(四氧化三鐵+二氧化鈰)微生物燃料電池的功率性能做協同
作用優化試驗。最後此兩反應器的化學需氧量去除效率分別為 78%
和 65%;其最大功率密度分別為: 1.57 W/m3、 325.4 mW/m2 於 216 和
384 小時。這種混合型酵素-觸媒微生物燃料電池將來可以有效地應
用於相關替代綠色能源的生產技術和生物電化學系統。


Due to the fact that iron oxide (Fe2O3) is known to have a good
performance on the photochemical reaction of catalysts, an investigation
in the study one of the enhancement of the degradation performance of bio
electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) was carried out
using three different calcination temperature (500, 700, 900°C) to enhance
cathodic photocatalytic reduction of organic wastewater treatment. An
optimal calcination temperature of 500 °C for Fe2O3 in the electrode
material of the cathode was observed to produce a maximum power density
of 52.5 mW/m2 and a chemical oxygen demand (COD) degradation rate of
oily wastewater (catholyte) of 99.3% within one hour of operation.
However, the high temperature environment under the photocatalytic
reaction will affect the growth and metabolism of microorganisms.
Therefore, metal oxides (Fe3O4 and CeO2) are used instead of Fe2O3
catalyst. Metal oxides (Fe3O4 and CeO2) of are knowns to have a good
effect on the oxygen reduction reaction (ORR) of catalysts. It was
fabricated by modification of electrodes using multi-processing by
spraying of nitrogen-doped carbon (NDC)/CeO2/Fe3O4 catalysts. By
combining enzymes and catalysts, it has thinner biofilm formation and the
IV

oxygen vacancies / defect sites on the crystal lattice. All aims are to achieve
cost-effectiveness and effective treatment of organic wastewater.
The investigations in these two studies, the synergistic optimization
test were conducted with Fe3O4 catalysts to improve wastewater
degradation and the power performance of mixed enzyme-catalyst (Fe3O4
+ CeO2) of microbial fuel cells. Finally, the efficiency of chemical oxygen
demand (COD) removal of two reactors was 78% and 65% with maximum
power density of 1.57 W/m3, 325.4 mW/m2 in 216 and 384 h, respectively.
This hybrid type of enzyme-catalyst MFC can be effectively applied in
related alternative green energy production techniques and bio
electrochemical systems in the future.

摘要 I Abstract III 誌謝 V Table of Contents VII List of Figures XIII List of Tables XXIII Chapter 1: Introduction 1 1.1 Recent development of microbial fuel cells 1 1.2 Photo-catalyst applied to microbial fuel cells 4 1.3 Non-precious metal catalyst (Fe3O4) applied to microbial fuel cells (MFCs) 7 1.4 Mechanism of oxygen reduction reaction (ORR) and applied in microbial fuel cells 14 1.5 Bio-E-Fenton technology and development 18 1.6 Enzyme types and applied to microbial fuel cells 24 1.7 Research motivation and mechanism 33 1.7.1 Motivation I 33 1.7.2 Motivation II 36 1.7.3 Motivation III 38 Chapter 2: Literature Review 41 2.1 Microbial fuel cell for all wastewater treatment 41 2.2 The microbial fuel cell technology of bottleneck 48 2.3 Nitrogen doped carbon materials for modified electrode in microbial fuel cell 52 Chapter 3: Experimental Section 59 3.1 Experimental design and planning of work I 59 3.1.1 Mind map of work I 62 3.1.2 Synthesis of Fe2O3 catalyst 63 3.2 Experimental design and planning of work II 64 3.2.1 Mind map of work II 66 3.2.2 Synthesis of nano-Fe3O4 catalyst 67 3.3 Experimental design and planning of work III 69 3.3.1 Mind map of work III 72 3.3.2 Synthesis of nanorod-CeO2 catalyst 73 3.3.3 Pyrolysis and doped different content of CeO2 74 3.3.4 Preparation of enzyme-catalyst and spray to modify electrodes 76 3.4 Preparation of anolyte (anode-electrode of work II)/ catholyte and acclimation 79 3.4.1 Anolyte preparation for MFC 79 3.4.1.1 Preparation of anode-electrode for work II 80 3.4.2 Catholyte preparation for MFC 80 3.4.3 Inoculation and operational conditions for MFC 81 3.5 Preparation of biofilm for SEM and optical density measurement 82 3.5.1 Preparation of biofilm electrodes for SEM 82 3.5.2 Preparation method and optical density measurement 83 3.6 Electrochemical analyzer and measurements 84 3.6.1 Electrochemical measurements of work II and III 85 3.7 List of chemicals and instruments 87 3.8 Principle of characterization instruments 92 3.8.1 X-ray diffraction spectrometer (XRD) 92 3.8.2 X-ray photoelectron spectroscopy (XPS) 93 3.8.3 Scanning electron microscope (SEM) 95 3.8.4 Transmission electron microscope (TEM) 96 Chapter 4: Result and Discussion 98 4.1 Characterizations of work I 98 4.1.1 Electrochemical characterizations of work I (catalysts of calcinated Fe2O3) 102 4.1.1.1 Performance of the Fe2O3 –C500℃/CF in Bio-E-Fenton MFCs power generation and UV-Visible 102 4.1.2 Performance of COD removal with Fe2O3 –C500℃/CF in Bio-E-Fenton MFCs 106 4.2 Characterizations of work II 109 4.2.1 Electrochemical characterizations of work II (catalysts of NDC/Fe3O4 and different loading rates) 119 4.2.2 Chemical oxygen demand (COD) removal in oily wastewater of Bio-E-Fenton MFCs 126 4.3 Characterizations of work III 129 4.3.1 Electrochemical characterizations of work III (catalysts of NDC/CeO2/Fe3O4 at different contents of CeO2 142 4.3.2 Chemical oxygen demand removal and dissolved oxygen in oily wastewater of enzyme-catalyst MFCs 145 4.3.3 Optical density in dairy wastewater of enzyme-catalyst MFCs 148 4.3.4 Full cell long-term performance of enzyme-catalyst microbial fuel cells (ECMFCs) 149 4.3.5 Influence of biofilm formation in enzyme-catalyst microbial fuel cells (ECMFCs) 151 Chapter 5: Conclusion 153 5.1 Optimization of Fe2O3 calcination temperatures in innovative Bio-E-Fenton MFC 153 5.2 Multi-processed N doped Carbon and Fe3O4 cathode in Bio-electro Fenton microbial fuel cells 154 5.3 Synergistic action of enzyme and inorganic catalyst in microbial fuel cells 155 Reference 157 Appendix 175 CURRICULUM VITAE 176 RESEARCH AND PUBLICATIONS 177

[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 238 (1972) 37.
[2] Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, J. Qiu, Fe@ Fe2O3 core− shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system. J. Phys. Chem. C, 111 (2007) 14799-14803.
[3] M. Shrivastava, Adsorption removal of carcinogenic acid violet19 dye from aqueous solution by polyaniline-Fe2O3 magnetic nano-composite. J. Mater. Environ. Sci, 6 (2015) 11-21.
[4] M. Li, S. Zhou, α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell. Chem. Eng. J., 339 (2018) 539-546.
[5] H.O. Mohamed, M. Obaid, K.-M. Poo, M.A. Abdelkareem, S.A. Talas, O.A. Fadali, H.Y. Kim, K.-J. Chae, Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem. Eng. J., 349 (2018) 800-807.
[6] S. Yan, Y. Shi, Y. Tao, H. Zhang, Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction. Chem. Eng. J., 359 (2019) 933-943.
[7] C. Liang, K. Das, R. McClendon, The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol., 86 (2003) 131-137.
[8] F. Adani, D. Baido, E. Calcaterra, P. Genevini, The influence of biomass temperature on biostabilization–biodrying of municipal solid waste. Bioresour. Technol., 83 (2002) 173-179.
[9] G. Jadhav, M. Ghangrekar, Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol., 100 (2009) 717-723.
[10] J.-C. Wu, W.-M. Yan, C.-T. Wang, C.-H. Wang, Y.-H. Pai, K.-C. Wang, Y.-M. Chen, T.-H. Lan, S. Thangavel, Treatment of oily wastewater by the optimization of fe2o3 calcination temperatures in innovative bio-electron-fenton microbial fuel cells. Energies, 11 (2018) 565.
[11] S. Liu, C. Deng, L. Yao, H. Zhong, H. Zhang, The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. J. Power Sources, 269 (2014) 225-235.
[12] H. Xiao, Z.-G. Shao, G. Zhang, Y. Gao, W. Lu, B. Yi, Fe–N–carbon black for the oxygen reduction reaction in sulfuric acid. Carbon, 57 (2013) 443-451.
[13] H. Peng, F. Liu, X. Liu, S. Liao, C. You, X. Tian, H. Nan, F. Luo, H. Song, Z. Fu, Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catalysis, 4 (2014) 3797-3805.
[14] S. Shahgaldi, M. Ghasemi, W.R.W. Daud, Z. Yaakob, M. Sedighi, J. Alam, A.F. Ismail, Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Process. Technol., 124 (2014) 290-295.
[15] A. Mayahi, H. Ilbeygi, A.F. Ismail, J. Jaafar, W.R.W. Daud, D. Emadzadeh, E. Shamsaei, D. Martin, M. Rahbari‐Sisakht, M. Ghasemi, SPEEK/cSMM membrane for simultaneous electricity generation and wastewater treatment in microbial fuel cell. Journal of Chemical Technology & Biotechnology, 90 (2015) 641-647.
[16] J.C. Wu, W.M. Yan, W.H. Chiang, S. Thangavel, C.H. Wang, C.T. Wang, Innovative multi‐processed N‐doped carbon and Fe3O4 cathode for enhanced bioelectro‐Fenton microbial fuel cell performance. International Journal of Energy Research, (2019) 0-11.
[17] L. Chen, R.M. Berry, K.C. Tam, Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@ Fe3O4@ SiO2 superparamagnetic nanorods. ACS Sustainable Chemistry & Engineering, 2 (2014) 951-958.
[18] I.H. Park, M. Christy, P. Kim, K.S. Nahm, Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens. Bioelectron., 58 (2014) 75-80.
[19] X. Peng, H. Yu, X. Wang, Q. Zhou, S. Zhang, L. Geng, J. Sun, Z. Cai, Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour. Technol., 121 (2012) 450-453.
[20] X. Peng, H. Yu, L. Ai, N. Li, X. Wang, Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour. Technol., 144 (2013) 689-692.
[21] X. Shi, J. Zhang, T. Huang, High Power Output Microbial Fuel Cell using Nitrogen and Iron Co‐Doped Carbon Nanospheres as Oxygen‐Reduction Catalyst. Energy Technology, 5 (2017) 1712-1719.
[22] M.A.C. de Oliveira, B. Mecheri, A. D'Epifanio, E. Placidi, F. Arciprete, F. Valentini, A. Perandini, V. Valentini, S. Licoccia, Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. J. Power Sources, 356 (2017) 381-388.
[23] J. Carrillo-Rodríguez, S. García-Mayagoitia, R. Pérez-Hernández, M. Ochoa-Lara, F. Espinosa-Magaña, F. Fernández-Luqueño, I. Alonso-Lemus, F. Rodriguez-Varela, High performance Pd-CeO2-NR supported on graphene and N-doped graphene for the ORR and its application in a microbial fuel cell. ECS Transactions, 77 (2017) 1359-1365.
[24] M. Mashkour, M. Rahimnejad, S. Pourali, H. Ezoji, A. ElMekawy, D. Pant, Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Progress in Natural Science: Materials International, 27 (2017) 647-651.
[25] B.S. Thapa, S. Seetharaman, R. Chetty, T. Chandra, Xerogel based catalyst for improved cathode performance in microbial fuel cells. Enzyme Microb. Technol., 124 (2019) 1-8.
[26] C.W. Bezerra, L. Zhang, K. Lee, H. Liu, A.L. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta, 53 (2008) 4937-4951.
[27] A.A. Serov, M. Min, G. Chai, S. Han, S.J. Seo, Y. Park, H. Kim, C. Kwak, Electroreduction of oxygen over iron macrocyclic catalysts for DMFC applications. J. Appl. Electrochem., 39 (2009) 1509-1516.
[28] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Eviron. Sci., 4 (2011) 114-130.
[29] Z. Shi, J. Zhang, Density functional theory study of transitional metal macrocyclic complexes' dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J. Phys. Chem. C, 111 (2007) 7084-7090.
[30] F. Beck, The redox mechanism of the chelate-catalysed oxygen cathode. J. Appl. Electrochem., 7 (1977) 239-245.
[31] J.-P. Randin, Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim. Acta, 19 (1974) 83-85.
[32] P. Vasudevan, N. Mann, S. Tyagi, Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Met. Chem., 15 (1990) 81-90.
[33] J.H. Zagal, Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev., 119 (1992) 89-136.
[34] S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J.-M. Léger, Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J. Electroanal. Chem., 577 (2005) 223-234.
[35] I. Singh, A. Chandra, Use of the oxygen storage material CeO2 as co-catalyst to improve the performance of microbial fuel cells. Int. J. Hydrogen Energy, 41 (2016) 1913-1920.
[36] L. Li, M. Wang, N. Cui, Y. Ding, Q. Feng, W. Zhang, X. Li, CeO2 doped Pt/C as an efficient cathode catalyst for an air-cathode single-chamber microbial fuel cell. RSC Advances, 6 (2016) 25877-25881.
[37] M. Li, S. Zhou, M. Xu, Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem. Eng. J., 328 (2017) 106-116.
[38] X. Zhu, J. Ni, Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem. Commun., 11 (2009) 274-277.
[39] L. Zhuang, S. Zhou, Y. Yuan, M. Liu, Y. Wang, A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chem. Eng. J., 163 (2010) 160-163.
[40] M.Á.F. de Dios, A.G. del Campo, F.J. Fernández, M. Rodrigo, M. Pazos, M.Á. Sanromán, Bacterial–fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresour. Technol., 148 (2013) 39-46.
[41] L. Zhang, X. Yin, S.F.Y. Li, Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system. Chem. Eng. J., 276 (2015) 185-192.
[42] M. Hassan, N. Pous, B. Xie, J. Colprim, M.D. Balaguer, S. Puig, Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate. Chem. Eng. J., 328 (2017) 57-65.
[43] Y. Wang, C. Feng, Y. Li, J. Gao, C.-P. Yu, Enhancement of emerging contaminants removal using Fenton reaction driven by H2O2-producing microbial fuel cells. Chem. Eng. J., 307 (2017) 679-686.
[44] X.-Y. Yong, D.-Y. Gu, Y.-D. Wu, Z.-Y. Yan, J. Zhou, X.-Y. Wu, P. Wei, H.-H. Jia, T. Zheng, Y.-C. Yong, Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation. J. Hazard. Mater., 324 (2017) 178-183.
[45] X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour. Technol., 228 (2017) 322-329.
[46] H. Zhao, C.-H. Kong, Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresour. Technol., 258 (2018) 227-233.
[47] C. Su, Y. Lu, Q. Deng, S. Chen, G. Pang, W. Chen, M. Chen, Z. Huang, Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol. Ecotoxicology and environmental safety, 177 (2019) 39-46.
[48] M.V. Reddy, S. Srikanth, S.V. Mohan, P. Sarma, Phosphatase and dehydrogenase activities in anodic chamber of single chamber microbial fuel cell (MFC) at variable substrate loading conditions. Bioelectrochemistry, 77 (2010) 125-132.
[49] S. Fishilevich, L. Amir, Y. Fridman, A. Aharoni, L. Alfonta, Surface display of redox enzymes in microbial fuel cells. J. Am. Chem. Soc., 131 (2009) 12052-12053.
[50] O. Schaetzle, F. Barrière, U. Schröder, An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Eviron. Sci., 2 (2009) 96-99.
[51] S. Bakhshian, H.-R. Kariminia, R. Roshandel, Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization. Bioresour. Technol., 102 (2011) 6761-6765.
[52] H. Luo, S. Jin, P.H. Fallgren, H.J. Park, P.A. Johnson, A novel laccase-catalyzed cathode for microbial fuel cells. Chem. Eng. J., 165 (2010) 524-528.
[53] K.P. Prasad, Y. Chen, P. Chen, Three-dimensional graphene-carbon nanotube hybrid for high-performance enzymatic biofuel cells. ACS applied materials & interfaces, 6 (2014) 3387-3393.
[54] S.R. Higgins, C. Lau, P. Atanassov, S.D. Minteer, M.J. Cooney, Hybrid biofuel cell: microbial fuel cell with an enzymatic air-breathing cathode. Acs Catalysis, 1 (2011) 994-997.
[55] S. Calabrese Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev., 104 (2004) 4867-4886.
[56] A. Szczupak, D. Kol-Kalman, L. Alfonta, A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications. Chem. Commun., 48 (2012) 49-51.
[57] C. Santoro, S. Babanova, P. Atanassov, B. Li, I. Ieropoulos, P. Cristiani, High power generation by a membraneless single chamber microbial fuel cell (SCMFC) using enzymatic bilirubin oxidase (BOx) air-breathing cathode. J. Electrochem. Soc., 160 (2013) H720-H726.
[58] S.H. Hassan, Y.S. Kim, S.-E. Oh, Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb. Technol., 51 (2012) 269-273.
[59] J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv., 24 (2006) 296-308.
[60] J. Greenman, I. Gajda, I. Ieropoulos, Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy & Fuels, (2019).
[61] H.J. Kim, M.S. Hyun, I.S. Chang, B.H. Kim, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 9 (1999) 365-367.
[62] S. Oh, B.E. Logan, Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res., 39 (2005) 4673-4682.
[63] J.R. Trapero, L. Horcajada, J.J. Linares, J. Lobato, Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Applied energy, 185 (2017) 698-707.
[64] A. Faria, L. Gonçalves, J.M. Peixoto, L. Peixoto, A.G. Brito, G. Martins, Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell. Journal of cleaner production, 140 (2017) 971-976.
[65] N. Habibul, Y. Hu, Y.-K. Wang, W. Chen, H.-Q. Yu, G.-P. Sheng, Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells. Environmental science & technology, 50 (2016) 3882-3889.
[66] L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, Z. Wang, Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 71 (2017) 388-403.
[67] Y. Park, S. Park, V.K. Nguyen, J. Yu, C.I. Torres, B.E. Rittmann, T. Lee, Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem. Eng. J., 316 (2017) 673-679.
[68] H. Zou, Y. Wang, Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell. Bioresour. Technol., 235 (2017) 167-175.
[69] M. Do, H. Ngo, W. Guo, Y. Liu, S. Chang, D. Nguyen, L. Nghiem, B. Ni, Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci. Total Environ., 639 (2018) 910-920.
[70] W. Ding, S. Cheng, L. Yu, H. Huang, Effective swine wastewater treatment by combining microbial fuel cells with flocculation. Chemosphere, 182 (2017) 567-573.
[71] Y. Zhang, M. Liu, M. Zhou, H. Yang, L. Liang, T. Gu, Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103 (2019) 13-29.
[72] E. Fleurent-Wilson, M. Ibrahim, A. Salehian, in: ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers Digital Collection, (2013), pp. 707-719.
[73] W.C. Tsan, Y.C. Ming, C.Z. Sheng, T. Shuai, Effect of biometric flow channel on the power generation at different Reynolds numbers in the single chamber of rumen microbial fuel cells (RMFCs). Int. J. Hydrogen Energy, 36 (2011) 9242-9251.
[74] F. Fischer, S. Mermoud, G. Diouf, C. Bastian, Bio-inspired chemical hydrogen storage and discharge as a source of electrical energy. J. Appl. Electrochem., 42 (2012) 419-425.
[75] H. Liu, R. Ramnarayanan, B.E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental science & technology, 38 (2004) 2281-2285.
[76] P. Liang, R. Duan, Y. Jiang, X. Zhang, Y. Qiu, X. Huang, One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res., 141 (2018) 1-8.
[77] B. Min, B.E. Logan, Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental science & technology, 38 (2004) 5809-5814.
[78] Y. Ahn, B.E. Logan, Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol., 101 (2010) 469-475.
[79] L. Feng, Y. Yan, Y. Chen, L. Wang, Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Eviron. Sci., 4 (2011) 1892-1899.
[80] Q. Liu, Y. Zhou, S. Chen, Z. Wang, H. Hou, F. Zhao, Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. J. Power Sources, 273 (2015) 1189-1193.
[81] H. Tang, S. Cai, S. Xie, Z. Wang, Y. Tong, M. Pan, X. Lu, Metal–organic‐framework‐derived dual metal‐and nitrogen‐doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Advanced Science, 3 (2016) 1500265.
[82] X. Yang, W. Zou, Y. Su, Y. Zhu, H. Jiang, J. Shen, C. Li, Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. J. Power Sources, 266 (2014) 36-42.
[83] Y.-R. He, F. Du, Y.-X. Huang, L.-M. Dai, W.-W. Li, H.-Q. Yu, Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. J. Mater. Chem. A, 4 (2016) 1632-1636.
[84] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction. Acs Nano, 7 (2013) 4764-4773.
[85] C.-H. Feng, F.-B. Li, H.-J. Mai, X.-Z. Li, Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environmental science & technology, 44 (2010) 1875-1880.
[86] A. Oonnittan, M. ET Sillanpaa, Water treatment by electro-Fenton process. Curr. Org. Chem., 16 (2012) 2060-2072.
[87] Y. Kim, B.E. Logan, Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences, 108 (2011) 16176-16181.
[88] C.-H. Wang, H.-C. Huang, S.-T. Chang, Y.-C. Lin, M.-F. Huang, Pyrolysis of melamine-treated vitamin B12 as a non-precious metal catalyst for oxygen reduction reaction. RSC Advances, 4 (2014) 4207-4211.
[89] A.M. Diels, L. Callewaert, E.Y. Wuytack, B. Masschalck, C.W. Michiels, Inactivation of Escherichia coli by high-pressure homogenisation is influenced by fluid viscosity but not by water activity and product composition. International Journal of Food Microbiology, 101 (2005) 281-291.
[90] S. Ci, P. Cai, Z. Wen, J. Li, Graphene-based electrode materials for microbial fuel cells. Science China Materials, 58 (2015) 496-509.
[91] Q. Wang, X. Zhang, R. Lv, X. Chen, B. Xue, P. Liang, X. Huang, Binder-free nitrogen-doped graphene catalyst air-cathodes for microbial fuel cells. J. Mater. Chem. A, 4 (2016) 12387-12391.
[92] R.B. Song, C.e. Zhao, P.P. Gai, D. Guo, L.P. Jiang, Q. Zhang, J.R. Zhang, J.J. Zhu, Graphene/Fe3O4 nanocomposites as efficient anodes to boost the lifetime and current output of microbial fuel cells. Chemistry–An Asian Journal, 12 (2017) 308-313.
[93] E. Akbari, Z. Buntat, Benefits of using carbon nanotubes in fuel cells: a review. International Journal of Energy Research, 41 (2017) 92-102.
[94] C.H.S.X.Z. Guoyan, Treatment in Water Bodies Pollution by Ecological Floating Bed Technology [J]. China Water Kesources, 5 (2005) 022.
[95] M. Toyoda, M. Inagaki, Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution. Carbon, 38 (2000) 199-210.
[96] M. Blumer, Oil pollution of the ocean, in: Oil on the Sea, Springer, (1969), pp. 5-13.
[97] A. Nelson-Smith, The problem of oil pollution of the sea, in: Advances in marine biology, Elsevier, (1971), pp. 215-306.
[98] C.-T. Wang, Y.-S. Huang, T. Sangeetha, W.-M. Yan, Assessment of recirculation batch mode operation in bufferless bio-cathode microbial fuel cells (MFCs). Applied Energy, 209 (2018) 120-126.
[99] L. Zhang, X. Zhu, J. Li, Q. Liao, D. Ye, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J. Power Sources, 196 (2011) 6029-6035.
[100] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells, 86 (2005) 385-397.
[101] F. Rezaei, T.L. Richard, B.E. Logan, Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells. J. Power Sources, 192 (2009) 304-309.
[102] L. Xiao, J. Damien, J. Luo, H.D. Jang, J. Huang, Z. He, Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources, 208 (2012) 187-192.
[103] Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, H. Liu, Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron., 26 (2011) 1908-1912.
[104] C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun., 48 (2012) 2858-2860.
[105] C. Yu, F. Cao, X. Li, G. Li, Y. Xie, C.Y. Jimmy, Q. Shu, Q. Fan, J. Chen, Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J., 219 (2013) 86-95.
[106] W. Zhou, F. Sun, K. Pan, G. Tian, B. Jiang, Z. Ren, C. Tian, H. Fu, Well‐ordered large‐pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv. Funct. Mater., 21 (2011) 1922-1930.
[107] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Advances, 1 (2011) 1542-1553.
[108] X. Liu, K. Chen, J.-J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. Journal of Saudi Chemical Society, 19 (2015) 479-484.
[109] T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater., 20 (2010) 2255-2262.
[110] N. Xu, Y. Zhang, H. Tao, S. Zhou, Y. Zeng, Bio-electro-Fenton system for enhanced estrogens degradation. Bioresour. Technol., 138 (2013) 136-140.
[111] Y. Wang, B. Li, L. Zeng, D. Cui, X. Xiang, W. Li, Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens. Bioelectron., 41 (2013) 582-588.
[112] Z. Wang, Y. Zheng, Y. Xiao, S. Wu, Y. Wu, Z. Yang, F. Zhao, Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresour. Technol., 144 (2013) 74-79.
[113] M.R.P.V. Shrivastava, Adsorption removal of carcinogenic acid violet19 dye from aqueous solution by polyaniline-Fe2O3 magnetic nano-composite. J. Mater. Environ. Sci, 6 (2015) 11-21.
[114] J. Li, X. Liu, L. Pan, W. Qin, T. Chen, Z. Sun, MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. Rsc Advances, 4 (2014) 9647-9651.
[115] S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater., 112 (2004) 269-278.
[116] Q. Smejkal, D. Linke, U. Bentrup, M.-M. Pohl, H. Berndt, M. Baerns, A. Brückner, Combining accelerated activity tests and catalyst characterization: a time-saving way to study the deactivation of vinylacetate catalysts. Applied Catalysis A: General, 268 (2004) 67-76.
[117] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical reviews in environmental science and technology, 36 (2006) 1-84.
[118] P. Linh, D. Manh, P. Phong, L. Hong, N. Phuc, Magnetic properties of Fe3O4 nanoparticles synthesized by coprecipitation method. Journal of Superconductivity and Novel Magnetism, 27 (2014) 2111-2115.
[119] H. El Ghandoor, H. Zidan, M.M. Khalil, M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci, 7 (2012) 5734-5745.
[120] Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater., 21 (2009) 1778-1780.
[121] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 124 (2002) 8204-8205.
[122] G.V. Lowry, K.B. Gregory, S.C. Apte, J.R. Lead, in, ACS Publications, (2012).
[123] P.H. Matter, L. Zhang, U.S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal., 239 (2006) 83-96.
[124] L. Zhang, J. Niu, L. Dai, Z. Xia, Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir, 28 (2012) 7542-7550.
[125] H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Müllen, Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc., 135 (2013) 16002-16005.
[126] H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale, 8 (2016) 12977-12989.
[127] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 352 (2016) 333-337.
[128] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332 (2011) 443-447.
[129] U.I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter, P. Bogdanoff, On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc., 138 (2016) 635-640.
[130] Y. Zhu, B. Zhang, X. Liu, D.W. Wang, D.S. Su, Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed., 53 (2014) 10673-10677.
[131] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev., 109 (2009) 6570-6631.
[132] T.X.H. Le, M. Bechelany, J. Champavert, M. Cretin, A highly active based graphene cathode for the electro-Fenton reaction. RSC Advances, 5 (2015) 42536-42539.
[133] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351 (2016) 361-365.
[134] H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. Acs Catalysis, 2 (2012) 781-794.
[135] W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth‐abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed., 55 (2016) 2650-2676.
[136] Z. Wang, G.D. Mahadevan, Y. Wu, F. Zhao, Progress of air-breathing cathode in microbial fuel cells. J. Power Sources, 356 (2017) 245-255.
[137] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental science & technology, 40 (2006) 5193-5199.
[138] H. Rismani-Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, Cathodic limitations in microbial fuel cells: an overview. J. Power Sources, 180 (2008) 683-694.
[139] S. Yuan, Y. Fan, Y. Zhang, M. Tong, P. Liao, Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of rhodamine B. Environmental science & technology, 45 (2011) 8514-8520.
[140] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Rsc Advances, 4 (2014) 61912-61918.
[141] Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Eviron. Sci., 7 (2014) 2535-2558.
[142] N. Touach, V. Ortiz-Martínez, M. Salar-García, A. Benzaouak, F. Hernández-Fernández, A. de los Ríos, N. Labjar, S. Louki, M. El Mahi, E. Lotfi, Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater. Sep. Purif. Technol., 171 (2016) 174-181.
[143] X. Zhu, B.E. Logan, Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J. Hazard. Mater., 252 (2013) 198-203.
[144] L. Fu, S.-J. You, G.-q. Zhang, F.-L. Yang, X.-h. Fang, Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chem. Eng. J., 160 (2010) 164-169.
[145] X.-W. Liu, X.-F. Sun, D.-B. Li, W.-W. Li, Y.-X. Huang, G.-P. Sheng, H.-Q. Yu, Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water Res., 46 (2012) 4371-4378.
[146] X. Li, B. Hu, S. Suib, Y. Lei, B. Li, Electricity generation in continuous flow microbial fuel cells (MFCs) with manganese dioxide (MnO2) cathodes. Biochem. Eng. J., 54 (2011) 10-15.
[147] M. Palard, J. Balencie, A. Maguer, J.-F. Hochepied, Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles. Mater. Chem. Phys., 120 (2010) 79-88.
[148] W. Weber, K. Hass, J. McBride, Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48 (1993) 178.
[149] Z. Yang, T.K. Woo, M. Baudin, K. Hermansson, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study. The Journal of chemical physics, 120 (2004) 7741-7749.
[150] H.T. Chen, Y.M. Choi, M. Liu, M. Lin, A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2. ChemPhysChem, 8 (2007) 849-855.
[151] S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett., 87 (2005) 133113.
[152] P. Dutta, S. Pal, M. Seehra, Y. Shi, E. Eyring, R. Ernst, Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem. Mater., 18 (2006) 5144-5146.
[153] A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C, 112 (2008) 14955-14964.
[154] R.K.P. Purushothaman, J. Van Haveren, D. Van Es, I. Melián-Cabrera, J. Meeldijk, H. Heeres, An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl. Catal. B: Environ., 147 (2014) 92-100.
[155] X. Hao, C. Chen, M. Saito, D. Yin, K. Inoue, S. Takami, T. Adschiri, Y. Ikuhara, Direct imaging for single molecular chain of surfactant on CeO2 nanocrystals. Small, 14 (2018) 180-193.
[156] J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Size-dependent properties of CeO2− y nanoparticles as studied by Raman scattering. Physical Review B, 64 (2001) 245-407.
[157] C. Schilling, A. Hofmann, C. Hess, M.V.n. Ganduglia-Pirovano, Raman spectra of polycrystalline CeO2: a density functional theory study. J. Phys. Chem. C, 121 (2017) 20834-20849.
[158] E. Paparazzo, On the curve-fitting of XPS Ce (3d) spectra of cerium oxides. Mater. Res. Bull., 46 (2011) 323-326.
[159] Z.-X. Li, L.-L. Li, Q. Yuan, W. Feng, J. Xu, L.-D. Sun, W.-G. Song, C.-H. Yan, Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J. Phys. Chem. C, 112 (2008) 18405-18411.
[160] H. Li, G. Lu, D. Qiao, Y. Wang, Y. Guo, Y. Guo, Catalytic methane combustion over Co3O4/CeO2 composite oxides prepared by modified citrate sol–gel method. Catal. Lett., 141 (2011) 452-458.
[161] C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chem. Mater., 17 (2005) 4514-4522.
[162] Z.-L. Wang, G.-R. Li, Y.-N. Ou, Z.-P. Feng, D.-L. Qu, Y.-X. Tong, Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties. J. Phys. Chem. C, 115 (2010) 351-356.
[163] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 5 (2013) 3601-3614.
[164] M. Li, X. He, Y. Zeng, M. Chen, Z. Zhang, H. Yang, P. Fang, X. Lu, Y. Tong, Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical science, 6 (2015) 6799-6805.
[165] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery. ACS Applied Energy Materials, 2 (2019) 2541-2551.
[166] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. J. Mater. Chem. A, 4 (2016) 11472-11480.
[167] P. Gao, Z. Wang, W. Fu, Z. Liao, K. Liu, W. Wang, X. Bai, E. Wang, In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron, 41 (2010) 301-305.
[168] N. Skorodumova, S. Simak, B.I. Lundqvist, I. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett., 89 (2002) 166601.
[169] D. Bevan, J. Kordis, Mixed oxides of the type MO2 (fluorite)—M2O3—I oxygen dissociation pressures and phase relationships in the system CeO2@Ce2O3 at high temperatures. J. Inorg. Nucl. Chem., 26 (1964) 1509-1523.
[170] A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews, 38 (1996) 439-520.
[171] M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129 (2000) 63-94.
[172] L. Wang, Y. Zhao, C. Jiang, V. Ji, M. Chen, K. Zhan, F. Moreira, Investigation on microstructure and properties of electrodeposited Ni-Ti-CeO2 composite coating. J. Alloys Compd., 754 (2018) 93-104.
[173] F. Rezaei, T.L. Richard, B.E. Logan, Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol. Bioeng., 101 (2008) 1163-1169.
[174] P.C. Sangave, A.B. Pandit, Enhancement in biodegradability of distillery wastewater using enzymatic pretreatment. Journal of Environmental Management, 78 (2006) 77-85.
[175] P.M. Christy, L. Gopinath, D. Divya, A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34 (2014) 167-173.
[176] S. Kashefi, S.M. Borghei, N.M. Mahmoodi, Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater. J. Mol. Liq., 276 (2019) 153-162.
[177] M. Fatima, R. Farooq, R.W. Lindström, M. Saeed, A review on biocatalytic decomposition of azo dyes and electrons recovery. J. Mol. Liq., 246 (2017) 275-281.
[178] B. Zhang, Y. Liu, S. Tong, M. Zheng, Y. Zhao, C. Tian, H. Liu, C. Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells. J. Power Sources, 268 (2014) 423-429.
[179] X. Li, B. Hu, S. Suib, Y. Lei, B. Li, Manganese dioxide as a new cathode catalyst in microbial fuel cells. J. Power Sources, 195 (2010) 2586-2591.
[180] A. Jaouani, F. Guillén, M.J. Penninckx, A.T. Martínez, M.J. Martínez, Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb. Technol., 36 (2005) 478-486.
[181] M. Cammarota, D. Freire, A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour. Technol., 97 (2006) 2195-2210.
[182] K. Nakagawa, Y. Murata, M. Kishida, M. Adachi, M. Hiro, K. Susa, Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2–TiO2 composite nanostructures. Mater. Chem. Phys., 104 (2007) 30-39.
[183] X.-B. Gong, S.-J. You, X.-H. Wang, J.-N. Zhang, Y. Gan, N.-Q. Ren, A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell. Biosens. Bioelectron., 55 (2014) 237-241.
[184] C.S. Karigar, S.S. Rao, Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 2011 (2011).
[185] V. Ullrich, Enzymatic hydroxylations with molecular oxygen. Angewandte Chemie International Edition in English, 11 (1972) 701-712.
[186] J. Kaushal, S. Mehandia, G. Singh, A. Raina, S.K. Arya, Catalase enzyme: application in bioremediation and food industry. Biocatalysis and agricultural biotechnology, 16 (2018) 192-199.
[187] J.-H. Kim, K.-K. Oh, S.-T. Lee, S.-W. Kim, S.-I. Hong, Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem., 37 (2002) 1367-1373.
[188] M. Kumar, L. Philip, Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan. Journal of environmental science and health Part B, 41 (2006) 81-96.
[189] S. Larcher, V. Yargeau, Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl. Microbiol. Biotechnol., 91 (2011) 211-218.
[190] L. Lapinsonnière, M. Picot, C. Poriel, F. Barrière, Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances. Electroanalysis, 25 (2013) 601-605.
[191] A. Dheilly, I. Linossier, A. Darchen, D. Hadjiev, C. Corbel, V. Alonso, Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl. Microbiol. Biotechnol., 79 (2008) 157-164.
[192] A. Kouzuma, X.-Y. Meng, N. Kimura, K. Hashimoto, K. Watanabe, Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl. Environ. Microbiol., 76 (2010) 4151-4157.
[193] F. Xu, D. Wang, B. Sa, Y. Yu, S. Mu, One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. Int. J. Hydrogen Energy, 42 (2017) 13011-13019.
[194] Y. Yu, B. He, Y. Liao, X. Yu, Z. Mu, Y. Xing, S. Xing, Preparation of Hollow CeO2/CePO4 with Nitrogen and Phosphorus Co‐Doped Carbon Shells for Enhanced Oxygen Reduction Reaction Catalytic Activity. ChemElectroChem, 5 (2018) 793-798.
[195] Y. Yu, L. Gao, X. Liu, Y. Wang, S. Xing, Enhancing the Catalytic Activity of Zeolitic Imidazolate Framework‐8‐Derived N‐Doped Carbon with Incorporated CeO2 Nanoparticles in the Oxygen Reduction Reaction. Chemistry–A European Journal, 23 (2017) 10690-10697.
[196] D. Sun, J. Chen, H. Huang, W. Liu, Y. Ye, S. Cheng, The effect of biofilm thickness on electrochemical activity of Geobacter sulfurreducens. Int. J. Hydrogen Energy, 41 (2016) 16523-16528.
[197] J. Chen, F. Deng, Y. Hu, J. Sun, Y. Yang, Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell. J. Power Sources, 290 (2015) 80-86.
[198] D. Sun, S. Cheng, A. Wang, F. Li, B.E. Logan, K. Cen, Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environmental science & technology, 49 (2015) 5227-5235.

無法下載圖示 全文公開日期 2024/12/25 (校內網路)
全文公開日期 2024/12/25 (校外網路)
全文公開日期 2024/12/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE