簡易檢索 / 詳目顯示

研究生: Doris Tien Tien Yii
Doris Tien Tien Yii
論文名稱: Preparation and Characterization of 5-Fluorouracil Loaded Fluorescent Nanoparticles
Preparation and Characterization of 5-Fluorouracil Loaded Fluorescent Nanoparticles
指導教授: 高震宇
Chen-Yu Kao
蔡協致
Hsieh-Chih Tsai
口試委員: 高震宇
Chen-Yu Kao
蔡協致
Hsieh-Chih Tsai
駱俊良
Chun-Liang Lo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 奈米顆粒奈米載體聚合物5-氟尿嘧啶癌症治療
外文關鍵詞: Nanoparticles, Nanocarrier, Polymer, 5-Fluorouracil, Treatment of Cancer
相關次數: 點閱:263下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,高分子奈米粒子已被廣泛用作藥物傳遞之載體,然而,有效提升癌症的藥物治療之奈米顆粒,目前發展仍舊是個挑戰。因此,製備合適粒徑和表面電荷的藥物載體是提升治療效率之重要關鍵。本研究主要以聚乙烯亞胺(PEI),藻酸(ALG)和聚縮酮(PCADK)作為載體,透過透析法製備了聚合物奈米粒子。其中陽離子聚乙烯亞胺和陰離子藻酸透過聚電解質藉由相互靜電吸引而形成奈米粒子,同時疏水性聚縮酮則被複合體包圍並形成奈米顆粒。由動態光散射儀量測所製備之奈米顆粒的粒徑大小約為11 nm,進一步也從掃瞄電子顯微鏡(SEM)證實此奈米顆粒之形狀及大小。界面電位顯示此奈米粒子的外層被PEI覆蓋著,PEI的存在有助於奈米顆粒的螢光性質。此外,奈米顆粒的形成以核磁共振氫譜(1H-NMR)和傅里葉轉換紅外光譜(FTIR)分析鑒定且證實了聚乙烯亞胺,藻酸和聚縮酮之間的相互作用以形成奈米顆粒。且包覆5-FU的奈米藥物載體的粒徑大於未包覆藥的奈米粒子。此載體之藥物包覆率和藥物含量分別為28.46% 和4.43%。此藥物載體分别在三個不同的pH值下進行約104小時的體外藥物釋放評估,結果顯示載體在酸性環境(pH 5和pH 6.8)和中性環境(pH 7.4)的釋放曲線呈現緩慢之藥物釋放方式,且5-FU的釋放量在104小時後分別為82%,77% 和 52%。體外細胞毒性測定結果顯示包覆5-FU的顆粒相對可以更好地被癌細胞吞噬,因此對WiDr結腸直腸腺癌細胞系的抗癌活性比5-FU具有更好的細胞毒性作用。目前的研究表明此載體深具潛力,並且可以幫助提高5-FU對癌症之治療效果。


    Recent year, nanoparticles have been widely employed as carriers for drug delivery applications. However, the development of nanoparticles that can enhance effective therapeutic efficacy against cancer is always a challenge. The formulation of nanoparticle with suitable size and surface charge as an efficient drug carrier need to be implemented. In this study, the polymeric nanoparticles consisting of branched polyethylenime (PEI), alginic acid (ALG) and poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) were prepared via dialysis method. The cationic PEI and anionic ALG were electrostatically attracted to each other through polyelectrolyte complexation. Meanwhile, the hydrophobic PCADK was surrounded by the complex forming nanoparticles with examined size around 11 nm by DLS which were further verified by SEM. The positive zeta potential indicated the outer layer of nanoparticle was covered by PEI and the presence of PEI contributed to the fluorescence property of nanoparticle. Besides that, 1H-NMR and FTIR analysis confirmed the interaction among the PEI, ALG and PCADK for the formation of nanoparticles. The 5-FU encapsulated nanoparticles were prepared with particle size examined slightly larger than the blank nanoparticle. Both the encapsulation efficiency and drug loading of the 5-FU loaded nanoparticles were 28.46% and 4.43% respectively. The drug release profiles at pH 5, 6.8 and 7.4 for 104 h were composed of burst release and sustained release that resulted in the 5-FU release of 82%, 77% and 52% respectively. Moreover, cytotoxicity assay was carried out to analyze the anticancer activities in vitro against WiDr colorectal adenocarcinoma cell lines and the results showed that 5-FU nanoparticles had more cytotoxicity effect than free 5-FU due to better adsorption onto the cancer cells. Current study showed that the nanoparticles are potential drug carriers to enhance the therapeutic efficacy of 5-FU against the cancer.

    ABSTRACT I 摘要 II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII LIST OF ABBREVIATIONS X LIST OF SYMBOLS XII CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objectives 4 CHAPTER 2 LITERATURE REVIEW 5 2.1 Cancer 5 2.1.1 Colorectal Cancer 5 2.2 Drug Delivery System 6 2.2.1 Polymeric Nanoparticles 7 2.3 5-Fluorouracil (5-FU) 10 2.4 Polymers 11 2.4.1 Polyketal 11 2.4.1.1 Poly (cyclohexane-1, 4-diyl acetone dimethylene ketal) (PCADK) 12 2.4.2 Alginic Acid (ALG) 14 2.4.3 Polyethylenimine (PEI) 15 2.5 Synthesis of Polysaccharide based Nanoparticles 16 2.5.1 Size Control of Nanoparticles 18 CHAPTER 3 MATERIAL AND METHODS 19 3.1 Materials 19 3.2 Experimental Design 20 3.2.1 Preparation of Polymeric Nanoparticles 21 3.3 Characterization of Nanoparticles 22 3.3.1 Fourier Transform Infrared (FTIR) 22 3.3.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 22 3.3.3 Particle Size and Zeta Potential 22 3.3.4 Scanning Electron Microscopy (SEM) 22 3.3.5 Transmission Electron Microscopy (TEM) 23 3.3.6 Fluorescence Measurement 23 3.4 Drug Loading Study 23 3.5 Characterization of 5-FU Loaded Nanoparticles 24 3.5.1 Ultraviolet Spectra Measurement (UV) 24 3.5.2 Particle Size and Zeta Potential 24 3.5.3 Scanning Electron Microscopy (SEM) 25 3.5.4 Transmission Electron Microscopy (TEM) 25 3.6 Calibration Curve of 5-Fluorouracil 25 3.7 Drug Loading Content and Encapsulation Efficiency 27 3.8 In vitro Drug Release Study 27 3.9 Cell Culture 28 3.10 Cellular Uptake Study 28 3.11 Cytotoxicity Assay 29 3.12 Statistical Analysis 29 CHAPTER 4 RESULTS AND DISCUSSION 30 4.1 Formation of Polymeric Nanoparticles 30 4.2 Characterization of Nanoparticles 31 4.2.1 Fourier Transform Infrared (FTIR) 31 4.2.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 32 4.2.3 Particle Size and Zeta Potential 34 4.2.4 Scanning Electron Microscopy (SEM) 35 4.2.5 Transmission Electron Microscopy (TEM) 36 4.2.6 Fluorescence Measurement 36 4.3 Drug Loading Study 37 4.4 Characterization of 5-FU loaded Nanoparticles 38 4.4.1 Ultraviolet Spectra Measurement (UV) 38 4.4.2 Particle Size and Zeta Potential 39 4.4.3 Scanning Electron Microscopy (SEM) 41 4.4.4 Transmission Electron Microscopy (TEM) 41 4.5 Drug Loading Content and Encapsulation Efficiency 42 4.6 In vitro Drug Release Study 43 4.7 Cellular Uptake Study 46 4.8 Cytotoxicity Assay 48 CHAPTER 5 CONCLUSIONS 53 5.1 Conclusion 53 5.2 Future Work 54 REFERENCES 55

    1. Wightman, L., et al., Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. The journal of gene medicine, 2001. 3(4): p. 362-372.
    2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30.
    3. Jemal, A., et al., Cancer statistics, 2005. CA: a cancer journal for clinicians, 2005. 55(1): p. 10-30.
    4. Anand, P., et al., Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research, 2008. 25(9): p. 2097-2116.
    5. Ramanathan, R.K., et al., Safety and toxicity analysis of oxaliplatin combined with fluorouracil or as a single agent in patients with previously treated advanced colorectal cancer. Journal of Clinical Oncology, 2003. 21(15): p. 2904-2911.
    6. DiPiro, J.T., et al., K: A Pathophysiologic Approach. 1997: Appleton & Lange.
    7. Chouhan, R. and A. Bajpai, An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate)(PHEMA) nanoparticles. Journal of Materials Science: Materials in Medicine, 2009. 20(5): p. 1103-1114.
    8. Liu, K., et al., Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. International journal of nanomedicine, 2015. 10: p. 6445.
    9. Cao, S. and Y.M. Rustum, Synergistic antitumor activity of irinotecan in combination with 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. Cancer research, 2000. 60(14): p. 3717-3721.
    10. Kubota, T., Theoretical basis for low-dose CDDP/5-FU therapy. Gan to kagaku ryoho. Cancer & chemotherapy, 1999. 26(11): p. 1536-1541.
    11. Tummala, S., M.S. Kumar, and A. Prakash, Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharmaceutical Journal, 2015. 23(3): p. 308-314.
    12. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 2003. 3(5): p. 330-338.
    13. Parker, W.B. and Y.C. Cheng, Metabolism and mechanism of action of 5-fluorouracil. Pharmacology & therapeutics, 1990. 48(3): p. 381-395.
    14. Di Paolo, A., et al., Relationship between 5-fluorouracil disposition, toxicity and dihydropy rimidine dehydrogenase activity in cancer patients. Annals of oncology, 2001. 12(9): p. 1301-1306.
    15. Fata, F., et al., 5‐Fluorouracil‐induced small bowel toxicity in patients with colorectal carcinoma. Cancer, 1999. 86(7): p. 1129-1134.
    16. Kabanov, A.V. and H. Gendelman, Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Progress in polymer science, 2007. 32(8): p. 1054-1082.
    17. Bajpai, A. and J. Choubey, Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. Journal of Materials Science: Materials in Medicine, 2006. 17(4): p. 345-358.
    18. Freitas, C. and R. Müller, Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. European Journal of Pharmaceutics and Biopharmaceutics, 1999. 47(2): p. 125-132.
    19. Nair, L., et al., Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. International journal of nanomedicine, 2011. 6: p. 1685.
    20. Sadat, S.M., S.T. Jahan, and A. Haddadi, Effects of Size and Surface Charge of Polymeric Nanoparticles on in Vitro and in Vivo Applications. Journal of Biomaterials and Nanobiotechnology, 2016. 7(02): p. 91.
    21. Aydin, R. and M. Pulat, 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of Nanomaterials, 2012. 2012: p. 42.
    22. Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews, 2003. 55(3): p. 329-347.
    23. He, C., et al., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31(13): p. 3657-3666.
    24. Lee, S., et al., Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate chemistry, 2007. 18(1): p. 4-7.
    25. Ziebarth, J. and Y. Wang, Molecular dynamics simulations of DNA-polycation complex formation. Biophysical journal, 2009. 97(7): p. 1971-1983.
    26. Pastor‐Pérez, L., et al., Unprecedented Blue Intrinsic Photoluminescence from Hyperbranched and Linear Polyethylenimines: Polymer Architectures and pH‐Effects. Macromolecular rapid communications, 2007. 28(13): p. 1404-1409.
    27. Kabanov, A.V., et al., Efficient transformation of mammalian cells using DNA interpolyelectrolyte complexes with carbon chain polycations. Bioconjugate chemistry, 1993. 4(6): p. 448-454.
    28. Patnaik, S., et al., PEI-alginate nanocomposites: efficient non-viral vectors for nucleic acids. International journal of pharmaceutics, 2010. 385(1): p. 194-202.
    29. Boussif, O., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences, 1995. 92(16): p. 7297-7301.
    30. Soares, J., et al., Thermal behavior of alginic acid and its sodium salt. Eclética Química, 2004. 29(2): p. 57-64.
    31. Wong, T.W., et al., Design of controlled-release solid dosage forms of alginate and chitosan using microwave. Journal of controlled Release, 2002. 84(3): p. 99-114.
    32. Chan, L.W. and P.W. Heng, Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials, 2002. 23(5): p. 1319-1326.
    33. Choi, Y.S., et al., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999. 20(5): p. 409-417.
    34. Goh, C.H., P.W.S. Heng, and L.W. Chan, Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 2012. 88(1): p. 1-12.
    35. Kufe, D.W., et al., Holland-Frei cancer medicine. BC Decker Inc., 2003.
    36. Parker, S.L., et al., Cancer statistics, 1996. CA: A cancer journal for clinicians, 1996. 46(1): p. 5-27.
    37. Kinzler, K.W. and B. Vogelstein, Lessons from hereditary colorectal cancer. Cell, 1996. 87(2): p. 159-170.
    38. Cannon-Albright, L.A., et al., Common inheritance of susceptibility to colonic adenomatous polyps and associated colorectal cancers. New England Journal of Medicine, 1988. 319(9): p. 533-537.
    39. O’Connell, J.B., M.A. Maggard, and C.Y. Ko, Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. Journal of the National Cancer Institute, 2004. 96(19): p. 1420-1425.
    40. Douillard, J., et al., Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. The Lancet, 2000. 355(9209): p. 1041-1047.
    41. Van Cutsem, E., et al., Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. New England Journal of Medicine, 2009. 360(14): p. 1408-1417.
    42. Saltz, L.B., et al., Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 2000. 343(13): p. 905-914.
    43. Conti, J.A., et al., Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. Journal of Clinical Oncology, 1996. 14(3): p. 709-715.
    44. Pitot, H.C., et al., Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. Journal of Clinical Oncology, 1997. 15(8): p. 2910-2919.
    45. de Gramont, A.d., et al., Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. Journal of Clinical Oncology, 2000. 18(16): p. 2938-2947.
    46. Bourzac, K., Nanotechnology: carrying drugs. Nature, 2012. 491(7425): p. S58-S60.
    47. Xu, S., et al., Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Advanced drug delivery reviews, 2013. 65(1): p. 121-138.
    48. Folkman, J. and D.M. Long, The use of silicone rubber as a carrier for prolonged drug therapy. Journal of surgical research, 1964. 4(3): p. 139-142.
    49. Grem, J.L., 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Investigational new drugs, 2000. 18(4): p. 299-313.
    50. Langer, R., Drug delivery abd targeting. Nature, 1998. 392(6679): p. 5-10.
    51. Ogawa, Y., et al., A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly (lactic/glycolic) acid. Chemical and Pharmaceutical Bulletin, 1988. 36(3): p. 1095-1103.
    52. Samad, A., Y. Sultana, and M. Aqil, Liposomal drug delivery systems: an update review. Current drug delivery, 2007. 4(4): p. 297-305.
    53. Liu, Z., et al., Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 2008. 60(15): p. 1650-1662.
    54. Blanco, E., et al., Multifunctional micellar nanomedicine for cancer therapy. Experimental Biology and Medicine, 2009. 234(2): p. 123-131.
    55. Nanjwade, B.K., et al., Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences, 2009. 38(3): p. 185-196.
    56. Malam, Y., M. Loizidou, and A.M. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences, 2009. 30(11): p. 592-599.
    57. Ng, S., et al., Synthesis and erosion studies of self-catalyzed poly (ortho ester) s. Macromolecules, 1997. 30(4): p. 770-772.
    58. Hollinger, J.O., Biomedical applications of synthetic biodegradable polymers. 1995: Crc.
    59. Brem, H., et al., Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Lancet, 1995. 345(8956): p. 1008-1012.
    60. Gregoriadis, G., Engineering liposomes for drug delivery: progress and problems. Trends in biotechnology, 1995. 13(12): p. 527-537.
    61. Knight, C.G., Liposomes, from physical structure to therapeutic applications. 1981: sole distributors for the USA and Canada, Elsevier North-Holland.
    62. Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 2001. 70(1): p. 1-20.
    63. Vasir, J.K., M.K. Reddy, and V.D. Labhasetwar, Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience, 2005. 1(1): p. 47-64.
    64. Singh, R. and J.W. Lillard, Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 2009. 86(3): p. 215-223.
    65. Vora, J., N. Bapat, and M. Boroujerdi, Investigation of the relative affinity of doxorubicin for neutral and negatively charged particulate carriers. Drug development and industrial pharmacy, 1993. 19(7): p. 759-771.
    66. Yoo, H.S., et al., Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharmaceutical research, 1999. 16(7): p. 1114-1118.
    67. Vauthier, C., et al., Drug delivery to resistant tumors: the potential of poly (alkyl cyanoacrylate) nanoparticles. Journal of Controlled Release, 2003. 93(2): p. 151-160.
    68. Niwa, T., et al., Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of Controlled Release, 1993. 25(1-2): p. 89-98.
    69. Fresta, M., et al., Pefloxacine mesilate‐and ofloxacin‐loaded polyethylcyanoacrylate nanoparticles: Characterization of the colloidal drug carrier formulation. Journal of pharmaceutical sciences, 1995. 84(7): p. 895-902.
    70. Uhrich, K.E., et al., Polymeric systems for controlled drug release. Chemical reviews, 1999. 99(11): p. 3181-3198.
    71. PS, S. and V. Joshi, PREPARATION AND CHARACTERISATION OF 5-FLUOROURACIL LOADED PLGA NANOPARTICLES FOR COLORECTAL CANCER THERAPY.
    72. Coester, C., et al., Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. Journal of microencapsulation, 2000. 17(2): p. 187-193.
    73. Qi, L., et al., Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 2004. 339(16): p. 2693-2700.
    74. Rajaonarivony, M., et al., Development of a new drug carrier made from alginate. Journal of pharmaceutical sciences, 1993. 82(9): p. 912-917.
    75. Zhang, N., et al., 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 2008. 13(8): p. 1551-1569.
    76. Fan, Y.-L., et al., Preparation of 5-fluorouracil-loaded nanoparticles and study of interaction with gastric cancer cells. Asian Pacific Journal of Cancer Prevention, 2014. 15(18): p. 7611-7615.
    77. Ghoshal, K. and S.T. Jacob, An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochemical pharmacology, 1997. 53(11): p. 1569-1575.
    78. Gill, S., R. Thomas, and R.M. Goldberg, Colorectal cancer chemotherapy. Alimentary pharmacology & therapeutics, 2003. 18(7): p. 683-692.
    79. Noordhuis, P., et al., 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Annals of oncology, 2004. 15(7): p. 1025-1032.
    80. Thomas, D. and J. Zalcberg, 5‐Fluorouracil: A pharmacological paradigm in the use of cytotoxics. Clinical and experimental pharmacology and physiology, 1998. 25(11): p. 887-895.
    81. Shirasaka, T., et al., Conceptual changes in cancer chemotherapy--biochemical modulation of 5-FU. Gan to kagaku ryoho. Cancer & chemotherapy, 2000. 27(6): p. 832-845.
    82. Cho, C.-S., Design and development of degradable polyethylenimines for delivery of DNA and small interfering RNA: An updated review. ISRN Materials Science, 2012. 2012.
    83. Sionkowska, A., Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science, 2011. 36(9): p. 1254-1276.
    84. Holland, S. and B. Tighe, Biodegradable polymers in advances in pharmaceutical sciences. Academic Press, London, 1992(1992).
    85. Kidane, A. and P.P. Bhatt, Recent advances in small molecule drug delivery. Current opinion in chemical biology, 2005. 9(4): p. 347-351.
    86. Heffernan, M.J. and N. Murthy, Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. Bioconjugate chemistry, 2005. 16(6): p. 1340-1342.
    87. Yang, S.C., et al., Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjugate chemistry, 2008. 19(6): p. 1164-1169.
    88. Maity, S., et al., A biodegradable adamantane polymer with ketal linkages in its backbone for gene therapy. Chemical Communications, 2015. 51(88): p. 15956-15959.
    89. Heffernan, M.J., et al., The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly (inosinic acid)–poly (cytidylic acid). Biomaterials, 2009. 30(5): p. 910-918.
    90. Lee, S., et al., Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic acids research, 2009: p. gkp758.
    91. Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature materials, 2008. 7(11): p. 863-868.
    92. Rees, D.A. and E.J. Welsh, Secondary and tertiary structure of polysaccharides in solutions and gels. Angewandte Chemie International Edition in English, 1977. 16(4): p. 214-224.
    93. Meng, S. and Y. Liu, Alginate block fractions and their effects on membrane fouling. Water research, 2013. 47(17): p. 6618-6627.
    94. Sriamornsak, P., N. Thirawong, and K. Korkerd, Swelling, erosion and release behavior of alginate-based matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 66(3): p. 435-450.
    95. Nitta, S.K. and K. Numata, Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International journal of molecular sciences, 2013. 14(1): p. 1629-1654.
    96. Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 2008. 60(15): p. 1638-1649.
    97. Martinsen, A., G. Skjåk‐Bræk, and O. Smidsrød, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and bioengineering, 1989. 33(1): p. 79-89.
    98. Dutkiewicz, J., et al., New forms of chitosan polyelectrolyte complexes. Advances in Chitin and Chitosan. Elsevier, London, 1992: p. 496-505.
    99. Huguet, M. and E. Dellacherie, Calcium alginate beads coated with chitosan: effect of the structure of encapsulated materials on their release. Process Biochemistry, 1996. 31(8): p. 745-751.
    100. Mi, F.-L., H.-W. Sung, and S.-S. Shyu, Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 2002. 48(1): p. 61-72.
    101. Murata, Y., et al., Preparation of chitosan-reinforced alginate gel beads—effects of chitosan on gel matrix erosion. International Journal of Pharmaceutics, 1993. 96(1): p. 139-145.
    102. Efentakis, M. and G. Buckton, The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices. Pharmaceutical development and technology, 2002. 7(1): p. 69-77.
    103. Yu, K., et al., Role of Four Different Kinds of Polyethylenimines (PEIs) in Preparation of Polymeric Lipid Nanoparticles and Their Anticancer Activity Study. Journal of Cancer, 2016. 7(7): p. 872.
    104. Demeneix, B. and J.P. Behr, Polyethylenimine (PEI). Advances in genetics, 2005. 53: p. 215-230.
    105. Zhang, Q.-F., et al., Amino Acid-Modified Polyethylenimines with Enhanced Gene Delivery Efficiency and Biocompatibility. Polymers, 2015. 7(11): p. 2316-2331.
    106. Dick, C. and G. Ham, Characterization of polyethylenimine. Journal of Macromolecular Science—Chemistry, 1970. 4(6): p. 1301-1314.
    107. Sun, Y., et al., Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Scientific reports, 2013. 3: p. 3036.
    108. Dehshahri, A., et al., Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials, 2009. 30(25): p. 4187-4194.
    109. Philipp, B., et al., Polyelectrolyte complexes—recent developments and open problems. Progress in Polymer Science, 1989. 14(1): p. 91-172.
    110. Lankalapalli, S. and V.M. Kolapalli, Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian journal of pharmaceutical sciences, 2009. 71(5): p. 481.
    111. Sæther, H.V., et al., Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers, 2008. 74(4): p. 813-821.
    112. Liao, I.-C., et al., Controlled release from fibers of polyelectrolyte complexes. Journal of Controlled Release, 2005. 104(2): p. 347-358.
    113. Krone, V., et al., Pharmacological composition containing polyelectrolyte complexes in microparticulate form and at least one active agent. 1997, Google Patents.
    114. Qi, M., et al., Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release. Macromolecular Research, 2014. 22(9): p. 1004-1011.
    115. Giunchedi, P., et al., Evaluation of alginate compressed matrices as prolonged drug delivery systems. AAPS PharmSciTech, 2000. 1(3): p. 31-36.
    116. Lee, D., et al., Bioreducible crosslinked polyelectrolyte complexes for MMP-2 siRNA delivery into human vascular smooth muscle cells. Pharmaceutical research, 2012. 29(8): p. 2213-2224.
    117. De Jong, W.H. and P.J. Borm, Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine, 2008. 3(2): p. 133.
    118. Fang, C., et al., In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. European Journal of Pharmaceutical Sciences, 2006. 27(1): p. 27-36.
    119. Zhang, L., et al., Camptothecin derivative-loaded poly (caprolactone-co-lactide)-b-PEG-b-poly (caprolactone-co-lactide) nanoparticles and their biodistribution in mice. Journal of controlled release, 2004. 96(1): p. 135-148.
    120. Kabanov, A.V., E.V. Batrakova, and V.Y. Alakhov, Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of controlled release, 2002. 82(2): p. 189-212.
    121. Si, S., et al., Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 2004. 16(18): p. 3489-3496.
    122. Shan, C., et al., Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid. Nanotechnology, 2008. 19(28): p. 285601.
    123. Shen, Y., et al., Immobilization of ionic liquid with polyelectrolyte as carrier. Chemical Communications, 2005(33): p. 4193-4195.
    124. Luo, Y., Size-controlled preparation of polyelectrolyte-protected gold nanoparticles by natural sunlight radiation. Materials Letters, 2007. 61(11): p. 2164-2166.
    125. Kondo, S.-i., et al., Drug Release Profile and Cellular Uptake of Polymeric Prodrugs Synthesized from Amphiphilic Blockcopolymer Using Mechanically Produced Macromonomers Possessing Anhydrate as a Terminal Group. Journal of Pharmacy and Nutrition Sciences, 2016. 6(1): p. 27-32.
    126. You, J.-o., Y.-c. Liu, and C.-A. Peng, Efficient gene transfection using chitosan-alginate core-shell nanoparticles. international Journal of nanomedicine, 2006. 1(2): p. 173.
    127. Jabs, A., Determination of secondary structure in proteins by fourier transform infrared spectroscopy (FTIR). Jena Library of Biologica Macromolecules, 2005.
    128. Park, S.-C., et al., Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. International journal of nanomedicine, 2013. 8: p. 3663.
    129. Murdzheva, D., et al., Microwave-Assisted Synthesis of Methyl Esters of Alginic Acids as Potential Drug Carrier. International Journal of Pharmaceutical and Clinical Research, 2016. 8(10): p. 1361-1368.
    130. Debele, T.A., et al., Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Advances, 2016. 6(18): p. 14692-14704.
    131. Bhattacharjee, S., DLS and zeta potential–What they are and what they are not? Journal of Controlled Release, 2016. 235: p. 337-351.
    132. Kondo, M. and M. Araie, Iontophoresis of 5-fluorouracil into the conjunctiva and sclera. Investigative ophthalmology & visual science, 1989. 30(3): p. 583-585.
    133. Wang, J., et al., More effective nanomedicines through particle design. Small, 2011. 7(14): p. 1919-1931.
    134. Liu, C., et al., Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012. 33(13): p. 3604-3613.
    135. Zhang, Y., J.-M. Liu, and X.-P. Yan, Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Analytical chemistry, 2012. 85(1): p. 228-234.
    136. Bronzino, J.D. and D.R. Peterson, Molecular, Cellular, and Tissue Engineering. 2015: CRC Press.
    137. Yang, F., Y. Zhang, and H. Liang, Interactive association of drugs binding to human serum albumin. International journal of molecular sciences, 2014. 15(3): p. 3580-3595.
    138. Karthikeyan, S., et al., Insights into the binding of 3-(1-phenylsulfonyl-2-methylindol-3-ylcarbonyl) propanoic acid to bovine serum albumin: Spectroscopy and molecular modelling studies. Nano Biomed. Eng, 2015. 7(1): p. 1-7.
    139. Katrahalli, U., S. Jaldappagari, and S.S. Kalanur, Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods. Journal of Luminescence, 2010. 130(2): p. 211-216.
    140. Hu, Y., et al., Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release, 2007. 118(1): p. 7-17.
    141. Müller, R. and C. Jacobs, Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. International Journal of Pharmaceutics, 2002. 237(1): p. 151-161.
    142. Bhattacharjee, S., et al., Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Particle and fibre toxicology, 2012. 9(1): p. 11.
    143. Zhao, F., et al., Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 2011. 7(10): p. 1322-1337.
    144. Budunoglu, H., et al., ACS Appl. Mater. Interfaces. Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films, 2011. 3: p. 539-545.
    145. Tsuzuki, T., Nanotechnology commercialization. 2013: CRC Press.
    146. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics, 2010. 7(6): p. 1913-1920.
    147. Wu, X.L., et al., Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Bioconjugate chemistry, 2010. 21(2): p. 208-213.
    148. Kavitha, K. and S. Rao, An investigation on enhancement of solubility of 5 fluorouracil by applying complexation technique-characterization, dissolution and molecular-modeling studies. Journal of Applied Pharmaceutical Science, 2013. 3(3): p. 162.
    149. Tang, H., et al., Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. International journal of pharmaceutics, 2011. 421(2): p. 388-396.
    150. El-Kamel, A., et al., Preparation and evaluation of ketoprofen floating oral delivery system. International Journal of Pharmaceutics, 2001. 220(1): p. 13-21.
    151. Stuart, M.A.C., et al., Emerging applications of stimuli-responsive polymer materials. Nature materials, 2010. 9(2): p. 101.
    152. Yang, K.-N., et al., pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine, 2014. 11(1): p. 34.
    153. Popat, A., et al., A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 2012. 22(22): p. 11173-11178.
    154. Yuan, L., et al., Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. The Journal of Physical Chemistry C, 2011. 115(20): p. 9926-9932.
    155. Conner, S.D. and S.L. Schmid, Regulated portals of entry into the cell. Nature, 2003. 422(6927): p. 37-44.
    156. Lai, S.K., et al., Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials, 2007. 28(18): p. 2876-2884.
    157. Jiang, W., et al., Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology, 2008. 3(3): p. 145-150.
    158. Warburg, O., F. Wind, and E. Negelein, The metabolism of tumors in the body. The Journal of general physiology, 1927. 8(6): p. 519.
    159. Douroumis, D., et al., Computational Pharmaceutics: Application of Molecular Modeling in Drug Delivery. 2015: John Wiley & Sons.

    QR CODE