簡易檢索 / 詳目顯示

研究生: 郭惠民
Whei-ming Kuo
論文名稱: 線性壓電超音波馬達之智慧型控制與結合影像處理之對位系統
Intelligent Control for Linear Piezoelectric Ultrasonic Motor and Micro-Nanometer Alignment System Using Machine Vision
指導教授: 鄧昭瑞
Geo-Ry Tang
口試委員: 修芳仲
Fang-Jung Shiou
鍾國亮
Kuo-Liang Chung
黃安橋
An-Chyau Huang
史建中
Chien-jong Shih
李碩仁
Shuo-jen Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 96
中文關鍵詞: 壓電驅動平台智慧型控制自動對準特徵圖形
外文關鍵詞: Linear piezoelectric ultrasonic motor, Intelligent control, Auto-alignment, Fiducial mark shape
相關次數: 點閱:261下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對線性壓電超音波馬達之遲滯以及非線性現象,提出二階段規則推論之專家系統(expert system)、模糊邏輯(Fuzzy logic)、模糊滑動模式(Fuzzy sliding mode)等三種智慧型定位控制方法來改善其缺點。這些方法均不需要建立複雜的數學模型,經由實驗推論得到適當的控制參數,並利用暫態響應、正弦波軌跡與圓形軌跡的追跡來驗證其精密定位的可行性。
當線性壓電超音波馬達用於微奈米級定位時,原點的原始位置可能因重複定位而產生偏差。本研究另一主題即為結合高倍率影像處理技術,發展線性壓電超音波馬達之原點對位系統。此一系統能透過CCD的影像擷取、影像處理及影像分析以取得特徵圖形與標準圖案之誤差資訊,而後將位置補償量透過兩軸之壓電驅動平台進行補償,達到微奈米等級之影像自動對位之目的。


This paper proposes three intelligent precision control algorithms for overcoming the drawbacks of serious hysteresis behavior and highly nonlinear property for the dual-axes linear piezoelectric ultrasonic motor. The proposed control methods include the two-stage rule-based expert system, fuzzy logic and fuzzy sliding mode control. Optimal control parameters are determined by experiments without the need of complicated mathematical modeling. Position control performance for step response, sinusoidal and circular trajectories are evaluated and presented in time domain. The experimental results demonstrate that the proposed control methods are feasible and effective.
In addition, linear piezoelectric ultrasonic motors are often employed for positioning control at micro-nanoscale, and deviation from the original position may occur after repeated positioning. Hence, in this study, a novel automatic micro-nano alignment system using high magnification vision system coupled with a dual-axes linear piezoelectric ultrasonic motor was developed. The analytical algorithm of this vision-aided auto-alignment design makes use of real-time movements captured by CCD as inputs to obtain the difference between the fiducial mark and the target position. Alignment commands can then be fed to the two-axis piezoelectric motors to compensate for the positional difference. Both theoretical deductions and experimental trials have proved that the novel automatic vision-aided alignment system is robust and feasible for achieving precision to the micro-nanometer scale.

目 錄 中文摘要……………………………………………………………….. I 英文摘要(ABSTRACT)…………………………………………….…..II 誌 謝…………………………………………………………………. III 目 錄………………………………………………..…………………IV 圖索引…………………………….……………………………….......VII 表索引…………………………….………………………………........XI 第一章 緒論 ………………………….………………………………...1 1.1研究動機與目的………….………………………………...1 1.2文獻回顧……………………………………………………3 1.3論文架構…………………………………………………....8 第二章 線性壓電超音波馬達驅動平台…………………………..…..10 2.1壓電材料之簡介…………………………………………..10 2.2線性壓電超音波馬達……………………………………..11 2.3 線性壓電超音波馬達之特徵實驗……………………….15 2.3.1 外加不同粗動電壓與速度關係……………………18 2.3.2 外加不同微動電壓與速度關係……………………19 第三章 智慧型馬達控制系統................................................................21 3.1專家系統控制方法..............................................................21 3.1.1知識庫與資料庫的建立.............................................23 3.1.2規則推論的控制方法.................................................29 3.1.3 實驗結果與討論........................................................33 3.2模糊邏輯控制方法……………………………….………..38 3.2.1模糊化界面.................................................................40 3.2.2知識庫..........................................................................43 3.2.3決策邏輯.....................................................................44 3.2.4解模糊化介面.............................................................45 3.2.5 實驗方法....................................................................46 3.2.6實驗結果與討論………………………………….…48 3.3模糊滑動模式控制方法…………………………………..53 3.3.1可變結構控制…………………………………….…54 3.3.2滑動模式控制原理……………………………….…55 3.3.3模糊滑動模式控制原理…………………………….58 3.3.4 實驗方法....................................................................60 3.3.5實驗結果與討論………………………………….…61 3.4 PD控制方法……………..………………………………..65 3.4.1 實驗方法....................................……………………66 3.4.2實驗結果與討論.........................................................67 第4章 結合影像處理之自動對位系統………………………………74 4.1 實驗架構…………………………………………...…74 4.2 對位系統之演算法.......................................................76 4.3 影像處理分析與應用…………………...……………79 4.4 控制方法……………………………………………...83 4.5 實驗結果與討論...........................................................84 第5章 結論與未來展望……………………………….…………….87 5.1 結論…………………………….……………………..87 5.2 未來展望……………….……………………………..88 參考文獻………………………………………………………………90 作者簡介………………………………………………………………96

[1] S.C. Kim and S.H. Kim, “A precision linear actuator using piezoelectrically driven friction”, Mechatronics Vol.11, pp. 969-985 (2001).
[2] 陳旺樟,「線性馬達驅動平台之智慧型控制器設計」,華梵大學機電研究所碩士論文,台北(2007)。
[3] 邱俊明,「壓電定位平台之摩擦模型識別以及摩擦補償控制研究」,國立台灣科技大學機械研究所碩士論文,台北(2007)。
[4] 王世賢,「長行程奈米定位系統之控制器設計」,國立台灣科技大學機械研究所碩士論文,台北(2007)。
[5] Y.T. Liu, R.F. Fung, and C.C. Wang, “Precision position control using
combined piezo-VCM actuators”, Precision Engineering , Vol.29
pp. 411-422 (2001).
[6] 蔡明忠,自動化感測與控制教材,國立台灣科技大學自動化及控制研究所,台北(2003)。
[7] S.J. Kang, C.H. Woo, H.S. Hwang, and K.B. Woo, “Evolutionary Design of Fuzzy Rule Base for Nonlinear System Modeling and Control”, IEEE Transactions on Fuzzy Systems, Vol.8, No.1, pp. 37-45 (2000).
[8] H.L. Zhao and M. Qing, “Method to Obtain Effective Rule Base for
Unknown Nonlinear System”, Processing of the Second International
Conference on Machine Learning Cybernetics, Vol.2, No.5, pp. 519-524 (2003).
[9] V.G. Moudgal, K.M. Passino, and S.Yurkovich, “Rule-Based Control
for a Flexible-Link Robot”, IEEE Transactions on Control Systems
Technology, Vol.2, No.4, pp. 392-405 (1994).
[10] J. S. Taur, G. H. Lee and C. W. Tao, “A two-stage design of adaptive fuzzy controllers for time-delay systems with unknown models”, International Journal of Systems Science, Vol.38, No.5, pp. 433-449 (2007).
[11] J.H. Lai and C.T.Lin, “Application of neural fuzzy network to pyrometer correction and temperature control in rapid thermal processing”, IEEE Transm Fuzzy Systems, Vol.7, No.2, pp. 160-175 (1999).
[12] F.J. Lin, R.F. Fung, and R.J. Wai, “Comparison of sliding mode and fuzzy neural network control for motor-toggle servomechanism”, IEEE/ASME Trans. Mechatronics, Vol.3, No.4, pp. 302-318 (1998).
[13] Z.M. Yeh and K.H. Li, “A systematic approach for designing multistage fuzzy control systems”, Fuzzy Sets and Systems, Vol.143, pp. 251-273 (2004).
[14] R.J. Lian, B.F. Lin, and J.H. Huang, “A grey prediction fuzzy controller for constant cutting force in turning”, International Journal of Machine Tools & Manufacture, Vol.45, pp. 1047-1056 (2005).
[15] T. Chatchanyueyong and M. Parnichkun, “Neural Network based-time optimal sliding mode control for an autonomous underwater robot”, Mechatronics, Vol.16, pp. 471-478 (2006).
[16] R.J. Wai, C.M. Lin, and C.F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive”, Fuzzy Sets and Systems, Vol.143, pp. 295-310 (2004).
[17] K.C. Chiou and S.J. Huang, “An adaptive fuzzy controller for robot manipulators”, Mechatronics, Vol.15, pp. 151-177 (2005).
[18] H. Abid, M. Chtourou and A.Toumi, “Robust Fuzzy Sliding Mode controller for Discrete Nonlinear Systems”, International Journal of Computers, Communications & Control, Vol.3, No.1, pp. 6-20 (2008).
[19] M.Y. Sung and S.J. Huang, “Fuzzy logic motion control of a
piezoelectrically actuated table”, Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, Vol.218, No.5, pp. 381-397 (2004).
[20] R.J. Wai and J.D. Lee, “Intelligent motion control for linear
piezoelectric ceramic motor drive”, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, Vol.34, No.5, pp. 2100-2111 (2004).
[21] R.J. Wai and K.H. Su, “Supervisory control for linear piezoelectric
ceramic motor drive using genetic algorithm”, IEEE Transactions on
Systems Industrial Electronics, Vol.53, No.2, pp. 657-673 (2006).
[22] R.J. Wai, “Adaptive Grey control for hybrid resonant driving linear
piezoelectric ceramic motor”, IEEE Transactions on Industrial Electronics, Vol.53, No.2, pp. 640-652 (2006).
[23] C.M. Lin and Y.F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.34, No.2, pp. 2100-2111 (2004).
[24] H. Sakou, T. Miyatake, S. Kashioka, and M. Ejiri, “A Position Recognition Algorithm for Semiconductor Alignment Based on Structural Pattern Matching”, IEEE Transactions on Signal Processing, Vol.37, pp. 2148-2157 (1989).
[25] D.G. Sim and R.H. Park, “Two-Dimensional Object Alignment Based on The Robust Oriented Hausdorff Similarity Measure”, IEEE Transactions on Image Processing, Vol.10, No.3, pp. 475-483 (2001).
[26] X. Fernandez and J. Amat, “Research on Small Fiducially Mark Use for Robotic Manipulation and Alignment of Ophthalmic Lenses”, 7th IEEE International Conference on Emerging Technologies and Factory Automation, Vol. 2, pp. 1143 -1146 (1999).
[27] S. H. Lai, “Robust Image Matching under Partial Occlusion and Spatially Varying Illumination Change”, Computer Vision and Image Understanding, Vol.78, pp. 84-98 (2000).
[28] O. Shalvi, and E. Weinstein, “System Identification Using Non-stationary Signals”, IEEE Transactions on Signal Processing, Vol.44, No.8, pp. 2055 -2063 (1996).
[29] H. Ramoser, B. Wachmann, and H. Bischof, “Efficient Alignment of Fingerprint Images”, IEEE 16th International Conference on Pattern Recognition, Vol.3, No.3, pp. 748-751 (2002).
[30] M. Doi, K. Sato and K. Chihara, “A robust face identification against lighting fluctuation for lock control”, 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp. 42 -47 (1998).
[31] S.H. Lai and M. Fang, “A hybrid image alignment system for fast and precise pattern localization”, Real-Time Imaging, Vol.8, pp. 23-33 (2002).
[32] C.S. Lin and L.W. Lue, “An image system for fast positioning and accuracy inspection of ball grid array boards”, Microelectronics Reliability, Vol.41, pp. 119-128 (2001).
[33] H.T. Kim, C.S. Song, and H.J. Yang, “2-Step algorithm for automatic alignment in wafer dicing process”, Microelectronics Reliability, Vol.44, pp.1165-1179 (2004).
[34] C.Y. Nian and Y.S. Tarng, “An auto-alignment vision system with three-axis motion control mechanism”, International Journal of Advanced Manufacturing Technology, Vol.26, pp. 1121-1131 (2005).
[35] H.T. Kim, C.S. Song, and H.J. Yang, “Matrix form of automatic alignment algorithm in 2D space”, Proceedings of the IEEE International Conference on Mechatronics, ICM'04, pp. 465-469 (2004).
[36] C.Y. Nian, S.F. Chuang, and Y.S. Tarng, “A new algorithm for a three-axis auto-alignment system using vision inspection”, Journal of Materials Processing Technology, Vol.171, pp. 319-329 (2006).
[37] NANOMOTION Ltd., HR4 Ultrasonic motor user manual, March 2005.
[38] R.C. Gonzales and R.E. Woods, Digital Image Processing, second ed., Prentice Hall Publishing Company Inc., (2002).
[39] D. Henderson, and S. Ragona, “Nanometer precision robot for active photonics alignment using INCHWORM motors”, Proceedings of SPIE-The International Society for Optical Engineering, Vol.4290, pp. 136-144 (2001).
[40] 陳杏圓、王焜潔編著,人工智慧,高立圖書公司,台北 (2007)。
[41] M. Negnevitsky, Artificial Intelligence, second Edition, Addison- Wesley, An imprint of Pearson Education, England, p.p. 30 (2005).
[42] C.M. Douglas and C.R. George, Applied Statistics and Probability for Engineers, New York: John Wiley & Sons (2002).
[43] G.B. Thomas, D.M. Roy, and H.L. John, Mechanical Measurements, Fifth Ed., Addison-Wesley (1995).
[44] W. Bolton, Control Engineering, second Edition, Addison-Wesley Longman, New York (1999).
[45] 袁贊修,「三自由度氣壓肌肉機械臂之追蹤控制」,聖約翰科大機電整合研究所碩士論文,台北 (2007)。
[46] 孫宗瀛、楊英魁編著,Fuzzy控制理論、實作與應用,全華圖書公司,台北 (2005)。
[47] 陳永平、張浚林編著,可變結構控制設計,全華圖書公司,台北 (2006)。
[48] 羅紹,「結合基因演算法於模糊PID控制器之研究」,高雄應用科大電機工程研究所碩士論文,高雄 (2008)。

QR CODE