簡易檢索 / 詳目顯示

研究生: 蔡翊珊
Yi-Shan Tsai
論文名稱: 水熱法製備Ru/AgxW(8-x)/6S4光觸媒以應用在可見光水裂解產氫反應
Ru/AgxW(8-x)/6S4 Photocatalyst Synthesized for Hydrothermal Method for Water-Splitting Reaction to Produce Hydrogen under Visible Light irradiation
指導教授: 楊銘乾
Ming-Chien Yang
陳炎輝
Ian-Wui Chen
口試委員: 邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 水裂解光觸媒水熱法氫氣AgxW(8-x)/6S4
外文關鍵詞: photocatalyst, hydrothermal method, water-splitting, hydrogen, AgxW(8-x)/6S4
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用CH3COOAg、Na2WO4•2H2O、CH3CSNH2三種化合物當做前驅物,以水熱法(Hydrothermal Method)製備AgxW(8-x)/6S4光觸媒。分別由相同組成比例,不同反應溫度下合成的光觸媒,及取得最好反應溫度之光觸媒後,再改變不同莫耳組成比例,製備出最好的AgxW(8-x)/6S4光觸媒。並使用含浸法負載共觸媒Ru以提高光觸媒活性及產氫效率。製備完成的光觸媒分別利用X光繞射分析儀(XRD)、紫外光-可見光光譜分析儀(UV-Vis)、能量散佈光譜儀(EDS)、場發式電子顯微鏡(FE-SEM)來進行光觸媒的結構和特性之分析。由XRD研究結果得知,在反應溫度160℃、莫耳組成比例X=2時AgxW(8-x)/6S4光觸媒有最佳的結晶性。同樣,由UV-Vis可得知反應溫度160℃下及組成比例X=2時Ag2WS4光觸媒有最好的臨界波長405nm和能隙值2.76eV。由FE-SEM圖結果顯示光觸媒表面結構以球形結構為主,反應溫度160℃下,光觸媒表面結構平滑且顆粒大小均勻;因此得知,改變溫度及改變光觸媒組成比例皆會對光觸媒表面結構與形態造成影響。最後,再由EDS鑑定分別得知光觸媒成份確為AgxW(8-x)/6S4。光觸媒水裂解產氫結果,反應溫度160℃及組成比例X=2時,有最佳的產氫量,當負載1wt% Ru共觸媒時產氫速率可達62μmole/g cat/h。


    In this research, a series of photocatalyst AgxW(8-x)/6S4 was prepared through the hydrothermal method by mixing in different proportions of three chemical compounds: CH3COOAg, Na2WO4•2H2O, and CH3CSNH2 as precursors, and then the impregnation method is used to carry the cocatalysts Ru to enhance the activity of the photocatalyst and the efficiency of the hydrogen production rate. After the preparation, characterization of prepared photocatalysts was carried out including X-ray diffraction (XRD), UV - Visible spectrometer (UV-Vis), scanning electron microscope (SEM), and energy dispersed spectrometer (EDS). From the result of XRD, it is discovered that as the preparation temperature was 160℃and the proportions was X=2, the photocatalyst AgxW(8-x)/6S4 processes the best crystalline structure. From the result of UV-Vis, it is known as the preparation temperature is 160℃and proportions as X=2, maximum critical wavelength is about 450nm, with the energy gap of about 2.76eV. Furthermore, from the EDS identifications, it is known separately that the actual composition of the photocatalyst is confirmed to be AgxW(8-x)/6S4. Finally, from FE-SEM, it is known that the grain particles of photocatalyst were composing of the spherical structure, and with different preparation temperatures and proportions, the particle diameter sizes also change. From the experimental result, it is known that with the proportion of X=2, at the preparation temperature is 160℃, the photocatalyst AgxW(8-x)/6S4 processes the best reaction activity; and as it is carried with 1wt% co-catalyst of Ru, the hydrogen production rate can reach 62 μmol/g cat/h.

    誌謝 i 英文摘要 ii 中文摘要 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 第二章 文獻回顧 4 2.1觸媒基本定義 4 2.2光觸媒基本定義 4 2.3光觸媒歷史 5 2.4本多‧藤效應 6 2.5光觸媒反應類型 8 2.6 光觸媒水裂解反應機制 9 2.7光觸媒水裂解原理 10 2.8光觸媒功能與應用 12 2.9 製備觸媒之研究 14 2.9.1 固態反應法 14 2.9.2 熔鹽法 15 2.9.3 溶膠-凝膠法 15 2.9.4 水熱法 16 2.10 可見光光觸媒改質種類 18 2.11 共觸媒 21 2.11.1 含浸法 21 2.11.2 光沈積法 21 2.12 犧牲試劑 22 2.13 鎢簡介 24 2.14 醋酸銀簡介 24 第三章 實驗方法與裝置 25 3.1 實驗研究內容 25 3.2 實驗藥品與材料 26 3.3 製備合成觸媒 28 3.3.1改變不同溫度製備 Ag2WS4光觸媒 28 3.3.2固定溫度下改變不同莫耳比例製備 AgxW(8-x)/6S4光觸媒 30 3.3.3負載Ru共觸媒製備Ru(1wt%)/ AgxW(8-x)/6S4共觸媒 32 3.4 光觸媒反應裝置與分析 34 3.5儀器性質分析 37 3.5.1 X光繞射分析儀(XRD) 37 3.5.2 可見/紫外光光譜分析儀(UV/VIS Sepectrophotometer) 40 3.5.3場發式電子顯微鏡(FE-SEM)與能量散佈光譜儀(EDS) 43 第四章 結果與討論 45 4.1 X-Ray繞射圖譜分析 45 4.2紫外-可見光光譜分析 48 4.3 FE-SEM分析 58 4.4 EDS分析 72 4.5 AgxW(8-x)/6S4光觸媒進行產氫活性測試 73 4.6 Ru/AgxW(8-x)/6S4光觸媒進行產氫活性測試 76 第五章 結論 82 參考文獻 84

    【1】 A. Kudo, H. Kato, I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chemistry Letters, 33 (2004) 1534-1539.
    【2】 H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalite photocatalysts”, Catalysis Today, 78(2003) 561-569.
    【3】 A. Fujishima, K. Honda, “Electrochemical evidence for the mechanism of the primary stage of photosynthesis”, Bull Chemistry Society Japan, 44(1971) 1148.
    【4】 A. Kudo, H. Kato ”Photocatalytic activities of Na2W4O13 with layered structure”, Chem Lett, 5(1997) 421-422.
    【5】 A. Kudo, H. Hijii, “H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 Configuration and d0 transition metal ions” Chem Lett, 10(1999) 1103-1104.
    【6】 H. Kato, N. Matsudo, A. Kudo, “Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure”, Chem Lett 33(2004) 1216-1217.
    【7】 N. Saito, H. Kadowaki, Y. Inoue, K. Ikarashi, H. Nishiyama, Y. Inoue, “A new photocatalyst of RuO2-loaded PbWO4 for overall splitting of water” Chem Lett 33(2004) 1452-1453.
    【8】 D. Jing, M. Liu, Q. Chen, L. Guo, “Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process”, International journal of hydrogen energy 35(2010) 8521-8527.
    【9】 C.J. Crossland, P.J. Hickey, J.S.O. Evans, “The synthesis and characterisation of Cu2MX4 (M= W or Mo;X=S, Se or S/Se) materials prepared by a solvothermal method.”, J Mater Chem 15(2005) 3452-3458.
    【10】 E.A. Pruss, BS. Snyder, AM. Stacy, “A new layered ternary sulfide: formation of Cu2WS4 by reaction of WS42- and C+.” Angew Chem In Ed 32(1993) 256-257.
    【11】 A. Kudo, H. Kato, I. Tsuji, “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chemistry Letters, 33 (2004) 1534-1539.
    【12】 邱怡菁、陳郁文,“半導體光觸媒的製備及其在水分解反應之應用”,化工資訊,31 (2006) 72.
    【13】 威克佳文共賞網站─光觸媒介紹之生活上的應用http://www.wecare.tw/pub/LIT_1.asp?pcatid=38610&catid=68345
    【14】 藤島昭, ”圖解光觸媒” 中華民國九十二年.
    【15】 H. Kato, A. Kudo,” Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 Photocatalysts”, Catalysis Letters 58 (1999) 153-155.
    【16】 A.V. Gorokhovsky, J. I. Escalante-Garcia, T. Sanchez-Monjaras, C. A. Gutierrez-Chacarria “Synthesis of potassium polytitanate precursors by treatment of TiO2 with molten mixture of KNO and KOH”, Journal of the European Ceramic Society 24 (2004)
    【17】 R.S. Sonawane, S.G. Hegde, M. K. Dongare “Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating”, Materials Chemistry and Physics, 77 (2002) 744-750
    【18】 R.A. Laudise, “Hydrothermal Synthesis of Crystals”. Chemical And Engineering 28 (1986) 30–43.
    【19】 R. Niishiro, H. Kato, A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions”, Physical Chemistry Chemical Physics, 7 (2005) 2241-2245.
    【20】 A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting”, Chemical Physics Letters, 331 (2000) 373-377.
    【21】 H. H. Yang, L. J. Guo, W. Yan, H. T. Liu, “A novel composite photocatalyst for water splitting hydrogen production”, Journal of Power Sources, 159 (2006) 1305-1309.
    【22】 M. Ashokkumar, “An overview on semiconductor particulate systems for photoproduction of hydrogen”, International Journal of Hydrogen Energy, 23 (1998) 427-438.
    【23】 T. Kida, G. Q. Guan, N. Yamada, T. Ma, K. Kimura, A. Yoshida, “Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation”, International Journal of Hydrogen Energy, 29 (2004) 269-274.
    【24】 M. Kimi, L. Yuliati, M. Shamsuddin, "Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9-2xS solid solution photocatalysts" International Journal of Hydrogen Energy 36 (2011) 9453-9461.
    【25】 W.H. Bragg, “The nature of γ- and X-rays” Nature, 78 (1908) 271.
    【26】 K. Sayama, H. Arakawa, “Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst”, Journal of Photochemistry and Photobiology A: Chemistry, 94 (1996) 67-76.
    【27】 M. Knoll, “Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper". Zeitschrift für technische Physik 16: (1935)467–475
    【28】 行政院國家科學委員會。奈米銀。科學發展,2004年四月376期,P72-P77。
    【29】 行政院國家科學委員會。光觸媒。科學發展,2005年三月387期,P6-P11。
    【30】 何謂奈米銀,http://www.nanosilver.com.my/cn_nanotech.asp

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE