簡易檢索 / 詳目顯示

研究生: TRUONG GIANG VO
TRUONG GIANG VO
論文名稱: BiVO4 光陽極的表面改質工程應用於高效能之光電化學水分解
Surface Engineering of Bismuth Vanadate Photoanodes for Efficient Photoelectrochemical Water Splitting
指導教授: 江佳穎
Chia-Ying Chiang
戴龑
Yian Tai
口試委員: 鄧熙聖
Hsi-sheng Teng
蔡大翔
Dah-Shyang Tsai
陳浩銘
Hao-Ming Chen
牟中原
Chung-yuan Mou
江佳穎
Chia-Ying Chiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 159
中文關鍵詞: bismuth vanadateoxygen evolution reactionphotoanodesurface engineeringwater splitting
外文關鍵詞: bismuth vanadate, oxygen evolution reaction, photoanode, surface engineering, water splitting
相關次數: 點閱:341下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在過去的幾十年中,光電化學(photoelectrochemical)太陽能水分解已經成為一個核心的研究主題,許多研究學者投入了相當大的努力來開發高效能的催化劑。研究方向包含理論計算和實驗的結合來設計與開發新的半導體材料以及發展有效解決現有常見半導體材料限制的方法。然而,讓高效率的讓電荷從電極轉移到電解質介面的方法仍未開發完全,因此本論文專注於利用表面工程的方法來改善BiVO4光電化學水分解的效率。
第一個實驗章節為利用溶劑調整的方法來製造高機械強度及結晶良好的單斜晶系BiVO4。以硼酸鹽溶液為電解質,BiVO4光電極於水分解反應上表現出相對低的起始電位(0.4 V vs. RHE)以及高光電流密度為1.04 mA/cm2 (在1.23 V vs. RHE),此優異的表現在單純的BiVO4水分解相關文獻名列前1%,此樣品經過1小時後的水分解實驗,仍能保持約70%的光電流。於第二個實驗章節中,將太陽能電池中的電洞傳輸材料的概念引進至光電化學電池。與單純BiVO4的1.22 mA/cm2相比,隨著BiVO4 / CuSCN奈米柱異質光陽極結構的產生,光電流密度增加至1.78 mA/cm2。更重要的是,析氧反應(oxygen evolution reaction)的起始電位顯著的往陰極偏移(~230 mV)。異質結構在350-450 nm範圍還具有約50%的量子效率,太陽能轉換效率(0.5%)和不錯的氧化效率(~90%)。獨特的電極結構設計,可提供更多的活性位點,便於光激發之電洞的運輸和參與水氧化反應。第三個實驗章節則是合成層狀雙氫氧化物(layered double hydroxides, LDH)作為一種新的助催化劑,以用於增強BiVO4光陽極的光電化學水氧化效率。改良的光陽極展現出1.7倍的光電流密度,同時起始電位也向陰極偏移300 mV。複合光陽極PEC的效能提升,可歸咎於LDH的多功能作用,包含降低動力學屏障,促進光激發電荷分離,從而延遲光激發電荷的重組。在最後的實驗章節中,我們開發了一種簡便製備新型低成本磷酸鐵(ferrite phosphate)助催化劑的方法,此助催化劑可抑制電荷重組並穩定BiVO4光電極。複合光陽極可提供2.28 mA/cm2的光電流密度,與原始BiVO4相比增加250%。在溫和的鹼性環境中,助催化劑可讓起始電位產生陰極偏移~500 mV並且此複合光陽極具有高達90%的電洞氧化效率和超過120分鐘的良好穩定性,此外利用光電化學分析結果可發現,磷酸鐵可快速移轉”光激發半導體 - 電解質界面”上的電洞,增強了光轉換效率並防止光陽極的光氧化,確保了長期穩定性,因此提高底層BiVO4的光電化學性質。


In the past decades, photoelectrochemical (PEC) solar water splitting has become a central research theme and considerable efforts have been devoted for the development of efficient catalyst materials for chemical fuel generation. One direction is to design and search new semiconductor materials through a combination of computational and experimental efforts. The other one is to develop efficient strategies to address the existing limitations in the commonly used semiconductor materials. However, the efficient methodologies for charge transfer at electrode/electrolyte interface remain underdeveloped. Motivated by these challenges, this dissertation focuses on improving PEC materials, namely BiVO4, by surface engineering.
The first experimental chapter presents solvent-engineering approach for fabricating well-crystalized monoclinic BiVO4 with robust mechanistic properties as electrode material for solar water splitting. When applied as electrode material for water splitting in borate electrolyte solution, the BiVO4 electrode exhibited a relatively low onset potential of 0.4 V vs. RHE and a high photocurrent density of 1.04 mA/cm2 at 1.23 V vs. RHE which is among top 1% the highest results reported in the literature for bare BiVO4. Long-term stability witnessed a fairly stable behavior in which around 70% photo-induced current was maintained after one hour. In the second experimental chapter of this thesis, a new concept that integrates an appropriate hole transport material into the conventional photoelectrochemical cell is introduced by inspiring the devotion of hole transport material in the solar cell. With the creation of BiVO4/CuSCN heterojunction photoanodes, the photocurrent density increased to 1.78 mA cm-2 compared to 1.22 mA cm-2 of bare BiVO4. More importantly, the onset potential for oxygen evolution reaction exhibits a dramatic cathodic shift (~230 mV). The heterojunction also possesses internal quantum efficiency of approximately 50% in the range from 350-450 nm with relatively high solar energy conversion efficiency (0.5%) and much higher water oxidation efficiency (~90%). The unique electrode architecture design favoring the simple water splitting process over conventionally fabricated electrode by providing more active sites and facilitates transportation and consumption of photoinduced holes. The next section demonstrates a proof-of-concept electrochemical approach to synthesize hierarchical layered double hydroxides (LDH) for as a new co-catalyst for enhancing photoelectrochemical water oxidation of bismuth vanadate photoanode. The modified photoanodes exhibited 1.7 times increase in photocurrent density and a 300 mV cathodic shift in onset potential. The improved PEC performance of the composite photoanode could be attributed to the multifunctional roles of LDH that reduce kinetic barrier, facilitate photogenerated charges separation, thus retarded the recombination of photogenerated charges. In the last experimental chapter, a facile process is developed for preparing a new type of low-cost ferrite phosphate as an efficient co-catalyst to suppress charge recombination and stabilize bismuth vanadate (BiVO4) photoelectrodes. The composite photoanode exhibit a high photocurrent density of 2.28 mAcm-2, which corresponds to a 250% increase compared to that of pristine BiVO4. Deposition of cocatalyst has yielded a large cathodic shift (∼500 mV) in the onset potential, high oxidation efficiency of about 90% and a good stability of over 120 minutes in a mild basic medium. Comprehensive photoelectrochemical studies suggest that ferrite phosphate could boost the photoelectrochemical properties of the BiVO4 underlayer by mediating hole extraction across the photoexcited semiconductor-electrolyte interface. This in turn enhances photoconversion efficiency and prevents the photooxidation of the photoanode, ensuring prolonged stability.

Chapter 1 INTRODUCTION 1.1 Challenge and motivation 1.2 Organization of the dissertation Chapter 2 LITERATURE REVIEWS 2.1 The global energy challenge 2.2 Hydrogen as solar fuel 2.3 Photoelectrochemical water splitting 2.3.1 Semiconductor 2.3.2 Semiconductor and semiconductor-electrolyte interface 2.3.3 PEC device configuration 2.3.4 PEC water splitting processes 2.4 Photoeletrode materials for solar water splitting 2.4.1 Materials requirements 2.4.2 Photoanode materials 2.5 BiVO4 as photoanode material 2.5.1 Crystal structure and electronic properties of BiVO4 2.5.2 Advantages of BiVO4 2.5.3 Disadvantage of BiVO4 2.5.4 The progress of BiVO4 photoanodes Chapter 3 Experimental method 3.1 Chemicals and reagents 3.2 Basic instruments 3.3 Material synthesis 3.4 Characterization methods Chapter 4 Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for the efficiency of photoelectrochemical water splitting 4.1 Introduction 4.2 Experimental section 4.3 Results and Discussion 4.4 Conclusions Chapter 5 Turnip-inspired BVO/CuSCN nanostructure with close to 100% suppression of surface recombination for solar water splitting 5.1 Introduction 5.2 Experimental section 5.3 Result and Discussion 5.4 Conclusion Chapter 6 Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on BiVO4 photoanode 6.1 Introduction 6.2 Experimental 6.3 Results and Discussion 6.4 Conclusions Chapter 7 Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting 7.1 Introduction 7.2 Experimental section 7.3 Results and discussion 7.4 Conclusion Chapter 8 SUMMARY AND FUTURE OUTLOOK 8.1 Summary 8.2 Future outlooks

(1) Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective Charge Carrier Utilization in Photocatalytic Conversions. Acc. Chem. Res. 2016, 49 (5), 911–921.
(2) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37–38.
(3) Tang, J.; Durrant, J. R.; Klug, D. R. Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130 (42), 13885–13891.
(4) Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Nanostructured Bismuth Vanadate-Based Materials for Solar-Energy-Driven Water Oxidation: A Review on Recent Progress. Nanoscale 2014, 6 (23), 14044–14063.
(5) Kim, J. H.; Lee, J. S. BiVO4-Based Heterostructured Photocatalysts for Solar Water Splitting: A Review. Energy Environ. Focus 2014, 3 (4), 339–353.
(6) Xiao, S.; Chen, H.; Yang, Z.; Long, X.; Wang, Z.; Zhu, Z.; Qu, Y.; Yang, S. Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 Photoanodes between the BiVO4 and the FTO Side Illumination. J. Phys. Chem. C 2015, 119 (41), 23350–23357.
(7) Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. Chem. Soc. Rev. 2013, 2321–2337.
(8) Hernández, S.; Thalluri, S. M.; Sacco, A.; Bensaid, S.; Saracco, G.; Russo, N. Photo-Catalytic Activity of BiVO4 Thin-Film Electrodes for Solar-Driven Water Splitting. Appl. Catal. A Gen. 2015, 504 (5), 226–271.
(9) Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K.-S. Simultaneous Enhancements in Photon Absorption and Charge Transport of Bismuth Vanadate Photoanodes for Solar Water Splitting. Nat. Commun. 2015, 6, 8769.
(10) Xiao, B.-C.; Lin, L.-Y.; Hong, J.-Y.; Lin, H.-S.; Song, Y.-T. Synthesis of a Monoclinic BiVO4 Nanorod Array as the Photocatalyst for Efficient Photoelectrochemical Water Oxidation. RSC Adv. 2017, 7 (13), 7547–7554.
(11) Abdi, F. F.; van de Krol, R. Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes. J. Phys. Chem. C 2012, 116 (17), 9398–9404.
(12) Berglund, S. P.; Flaherty, D. W.; Hahn, N. T.; Bard, a J.; Mullins, C. B. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films. J. Phys. Chem. C 2011, 115 (9), 3794–3802.
(13) Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting. Nano Lett. 2011, 11 (5), 1928–1933.
(14) Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4. J. Am. Chem. Soc. 2011, 133 (45), 18370–18377.
(15) Conti, J. J. .; Diefenderfer, J. R. .; Napolitano, S. A. .; Schaal, M. .; Turnure, J. T. .; Westfall, L. D. Annual Energy Outlook 2014. 2014.
(16) Roel van de Krol;; Grätzel, M. Chapter 1 Introduction. In Photoelectrochemical Hydrogen Production; Gra, R. van de K., M. Gratzel, Eds.; Springer Science, 2012; p 3.
(17) Gür, T. M.; Bent, S. F.; Prinz, F. B. Nanostructuring Materials for Solar-to-Hydrogen Conversion. J. Phys. Chem. C 2014, 118 (37), 21301–21315.
(18) Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical Devices for Solar Water Splitting – Materials and Challenges. Chem. Soc. Rev. 2017, 46 (15), 4645–4660. https://doi.org/10.1039/C6CS00306K.
(19) Fujii, K. Thermodynamics for Electrochemistry and Photoelectrochemistry. In Solar to Chemical Energy Conversion: Theory and Application; Sugiyama, M., Fujii, K., Nakamura, S., Eds.; Springer International Publishing: Cham, 2016; pp 7–34.
(20) Zhang, P.; Wang, T.; Gong, J. Current Mechanistic Understanding of Surface Reactions over Water-Splitting Photocatalysts. Chem 2018, 4 (2), 223–245.
(21) Wang, Z.; Wang, L. Progress in Designing Effective Photoelectrodes for Solar Water Splitting. Chinese J. Catal. 2018, 39 (3), 369–378.
(22) Li, Z.; Feng, J.; Yan, S.; Zou, Z. Solar Fuel Production: Strategies and New Opportunities with Nanostructures. Nano Today 2015, 10 (4), 468–486.
(23) Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z. Photoelectrochemical Cells for Solar Hydrogen Production: Current State of Promising Photoelectrodes, Methods to Improve Their Properties, and Outlook. Energy Environ. Sci. 2013, 6 (2), 347–370.
(24) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473. https://doi.org/10.1021/cr1002326.
(25) Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering Heterogeneous Semiconductors for Solar Water Splitting. J. Mater. Chem. A 2015, 3 (6), 2485–2534.
(26) Li, J.; Wu, N. Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review. Catal. Sci. Technol. 2015, 5 (3), 1360–1384.
(27) Yang, Y.; Niu, S.; Han, D.; Liu, T.; Wang, G.; Li, Y. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Adv. Energy Mater. 7 (19), 1700555.
(28) Gan, J.; Lu, X.; Tong, Y. Towards Highly Efficient Photoanodes: Boosting Sunlight-Driven Semiconductor Nanomaterials for Water Oxidation. Nanoscale 2014, 6 (13), 7142–7164.
(29) Chen, S.; Wang, L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24 (18), 3659–3666.
(30) Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Photo-Electrochemical Hydrogen Generation from Water Using Solar Energy. Materials-Related Aspects. Int. J. Hydrogen Energy 2002, 27 (10), 991–1022.
(31) Li, J.-Q.; Guo, Z.-Y.; Wang, D.-F.; Lui, H.; Du, J.; Zhu, Z.-F. Effects of PH Value on the Surface Morphology of BiVO4 Microspheres and Removal of Methylene Blue under Visible Light. J. Exp. Nanosci. 2014, 9 (6), 616–624.
(32) Li, G.; Zhang, D.; Yu, J. C. Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst. Chem. Mater. 2008, 20 (12), 3983–3992.
(33) Liu, B.; Fang, Y.; Li, Z.; Xu, S. Visible-Light Nanostructured Photocatalysts—A Review. J. Nanosci. Nanotechnol. 2015, 15 (2), 889–920.
(34) Joy, J.; Mathew, J.; George, S. C. Nanomaterials for Photoelectrochemical Water Splitting – Review. Int. J. Hydrogen Energy 2018, 43 (10), 4804–4817.
(35) Hodes, G.; Cahen, D.; Manassen, J. Tungsten Trioxide as a Photoanode for a Photoelectrochemical Cell (PEC). Nature 1976, 260, 312.
(36) Lillard, R. S.; Kanner, G. S.; Butt, D. P. The Nature of Oxide Films on Tungsten in Acidic and Alkaline Solutions. J. Electrochem. Soc. 1998, 145 (8), 2718–2725.
(37) Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121 (49), 11459–11467.
(38) Tokunaga, S.; Kato, H.; Kudo, A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13 (12), 4624–4628. https://doi.org/10.1021/cm0103390.
(39) Sayama, K.; Nomura, A.; Zou, Z.; Abe, R.; Abe, Y.; Arakawa, H. Photoelectrochemical Decomposition of Water on Nanocrystalline BiVO4 Film Electrodes under Visible Light. Chem. Commun. (Camb). 2003, No. 23, 2908–2909.
(40) Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z. Solar Hydrogen Generation from Seawater with a Modified BiVO4 Photoanode. Energy Environ. Sci. 2011, 4 (10), 4046–4051.
(41) Zhao, Z.; Li, Z.; Zou, Z. Electronic Structure and Optical Properties of Monoclinic Clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13 (10), 4746.
(42) Payne, D. J.; Robinson, M. D. M.; Egdell, R. G.; Walsh, A.; McNulty, J.; Smith, K. E.; Piper, L. F. J. The Nature of Electron Lone Pairs in BiVO4. Appl. Phys. Lett. 2011, 98 (21), 212110.
(43) Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D. Electronic Structure of Monoclinic BiVO4. Chem. Mater. 2014, 26 (18), 5365–5373.
(44) Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S. H. Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. Chem. Mater. 2009, 21 (3), 547–551.
(45) Abdi, F. F.; Firet, N.; van de Krol, R.; VandeKrol, R. Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-Doping. ChemCatChem 2013, 5 (2), 490–496.
(46) Abdi, F. F.; Han, L.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadate-Silicon Tandem Photoelectrode. Nat. Commun. 2013, 4, 1–7.
(47) Alexander, B. D.; Kulesza, P. J.; Rutkowska, I.; Solarska, R.; Augustynski, J. Metal Oxide Photoanodes for Solar Hydrogen Production. J. Mater. Chem. 2008, 18 (20), 2298–2303.
(48) Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Charge Carrier Trapping, Recombination and Transfer in Hematite (α-Fe2O3) Water Splitting Photoanodes. Chem. Sci. 2013, 4 (7), 2724–2734.
(49) Tolod, K.; Hernández, S.; Russo, N. Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts 2017, 7 (1), 13.
(50) Berglund, S. P.; Rettie, A. J. E.; Hoang, S.; Mullins, C. B. Incorporation of Mo and W into Nanostructured BiVO4 Films for Efficient Photoelectrochemical Water Oxidation. Phys. Chem. Chem. Phys. 2012, 14 (19), 7065–7075.
(51) Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J. Factors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation. J. Phys. Chem. C 2011, 115 (36), 17870–17879.
(52) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-Photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24 (2), 229–251.
(53) Seabold, J. A.; Choi, K.-S. Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. J. Am. Chem. Soc. 2012, 134 (4), 2186–2192.
(54) Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science (80-. ). 2014, 343 (6174), 990–994.
(55) Chen, Y.-S.; Lin, L.-Y. Synthesis of Monoclinic BiVO4 Nanorod Array for Photoelectrochemical Water Oxidation: Seed Layer Effects on Growth of BiVO4 Nanorod Array. Electrochim. Acta 2018, 285, 164–171.
(56) Rettie, A. J. E.; Mozaffari, S.; McDaniel, M. D.; Pearson, K. N.; Ekerdt, J. G.; Markert, J. T.; Mullins, C. B. Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films. J. Phys. Chem. C 2014, 118 (46), 26543–26550.
(57) Jeong, S. Y.; Choi, K. S.; Shin, H.-M.; Kim, T. L.; Song, J.; Yoon, S.; Jang, H. W.; Yoon, M.-H.; Jeon, C.; Lee, J.; et al. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition. ACS Appl. Mater. \& Interfaces 2017, 9 (1), 505–512.
(58) Kim, T. L.; Choi, M. J.; Jang, H. W. Boosting Interfacial Charge Transfer for Efficient Water-Splitting Photoelectrodes: Progress in Bismuth Vanadate Photoanodes Using Various Strategies. MRS Communications. 2018, pp 1–14.
(59) Zhao, X.; Luo, W.; Feng, J.; Li, M.; Li, Z.; Yu, T.; Zou, Z. Quantitative Analysis and Visualized Evidence for High Charge Separation Efficiency in a Solid-Liquid Bulk Heterojunction. Adv. Energy Mater. 4 (9), 1301785.
(60) Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43 (15), 5234–5244.
(61) Liu, S.; Han, C.; Tang, Z.-R.; Xu, Y.-J. Heterostructured Semiconductor Nanowire Arrays for Artificial Photosynthesis. Mater. Horizons 2016, 3 (4), 270–282.
(62) Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 Electrodes for Enhanced Photoactivity of Water Oxidation. Energy Environ. Sci. 2011, 4 (5), 1781–1787.
(63) Pihosh, Y.; Turkevych, I.; Mawatari, K.; Asai, T.; Hisatomi, T.; Uemura, J.; Tosa, M.; Shimamura, K.; Kubota, J.; Domen, K.; et al. Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting. Small 2014, 10 (18), 3692–3699.
(64) Jin, B.; Jung, E.; Ma, M.; Kim, S.; Zhang, K.; Kim, J. Il; Son, Y.; Park, J. H. Solution-Processed Yolk-Shell-Shaped WO3/BiVO4 Heterojunction Photoelectrode for Efficient Solar Water Splitting. J. Mater. Chem. A 2018, 00, 1–8.
(65) Byun, S.; Kim, B.; Jeon, S.; Shin, B. Effects of a SnO2 Hole Blocking Layer in a BiVO4 -Based Photoanode on Photoelectrocatalytic Water Oxidation. J. Mater. Chem. A 2017, 5 (15), 6905–6913.
(66) Jiang, J.; Wang, M.; Li, R.; Ma, L.; Guo, L. Fabricating CdS/BiVO4 and BiVO4/CdS Heterostructured Film Photoelectrodes for Photoelectrochemical Applications. In International Journal of Hydrogen Energy; 2013; Vol. 38, pp 13069–13076.
(67) Wang, R.; Bai, J.; Li, Y.; Zeng, Q.; Li, J.; Zhou, B. BiVO4/TiO2(N2) Nanotubes Heterojunction Photoanode for Highly Efficient Photoelectrocatalytic Applications. Nano-Micro Lett. 2017, 9 (2), 1–9.
(68) Yang, J. S.; Wu, J. J. Low-Potential Driven Fully-Depleted BiVO4/ZnO Heterojunction Nanodendrite Array Photoanodes for Photoelectrochemical Water Splitting. Nano Energy 2017, 32, 232–240.
(69) Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46 (8), 1900–1909.
(70) Zhou, M.; Bao, J.; Bi, W.; Zeng, Y.; Zhu, R.; Tao, M.; Xie, Y. Efficient Water Splitting via a Heteroepitaxial BiVO4 Photoelectrode Decorated with Co-Pi Catalysts. ChemSusChem 2012, 5 (8), 1420–1425.
(71) Dang, K.; Chang, X.; Wang, T.; Gong, J. Enhancement of Photoelectrochemical Oxidation by an Amorphous Nickel Boride Catalyst on Porous BiVO4. Nanoscale 2017, 9, 16133–16137.
(72) Choi, S. K.; Choi, W.; Park, H. Solar Water Oxidation Using Nickel-Borate Coupled BiVO4 Photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15 (17), 6499–6507.
(73) Bi, Y.; Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y. Ultrathin FeOOH Nanolayers with Rich Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. Angew. Chemie Int. Ed. 2018, 1–6.
(74) Cai, L.; Zhao, J.; Li, H.; Park, J.; Cho, I. S.; Han, H. S.; Zheng, X. One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Lett. 2016, 1 (3), 624–632. https://doi.org/10.1021/acsenergylett.6b00303.
(75) Hu, Y.; Wu, Y.; Feng, J.; Huang, H.; Zhang, C.; Qian, Q.; Fang, T.; Xu, J.; Wang, P.; Li, Z.; et al. Rational Design of Electrocatalysts for Simultaneously Promoting Bulk Charge Separation and Surface Charge Transfer in Solar Water Splitting Photoelectrodes. J. Mater. Chem. A 2018, 6 (6), 2568–2576.
(76) Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P. Vastly Enhanced BiVO4 Photocatalytic OER Performance by NiCoO2 as Cocatalyst. Adv. Mater. Interfaces 2017, 4 (19), 1700540--n/a.
(77) Qian, L.; Liu, P.; Zhang, L.; Wang, C.; Yang, S.; Zheng, L.; Chen, A.; Yang, H. Amorphous Ferric Oxide as a Hole-Extraction and Transfer Layer on Nanoporous Bismuth Vanadate Photoanode for Water Oxidation. Chinese J. Catal. 2017, 38 (6), 1045–1051.
(78) Xia, L.; Bai, J.; Li, J.; Zeng, Q.; Li, L.; Zhou, B. High-Performance BiVO4 Photoanodes Cocatalyzed with an Ultrathin a-Fe2O3 Layer for Photoelectrochemical Application. Appl. Catal. B Environ. 2017, 204, 127–133.
(79) Lili, G.; Feng, L.; Haiguo, H.; Xuefeng, L.; Na, X.; Yiping, H.; Shenqi, W.; Chenglong, W.; Jiantai, M.; Jun, J. Dual Modification of BiVO4 Photoanode by Constructing Heterojunction with NiMoO4 and Depositing CoPi Co‐catalyst for Enhanced Photoelectrochemical Performance. ChemSusChem 2018, 11, 1–9.
(80) Quiñonero, J.; Gómez, R. Controlling the Amount of Co-Catalyst as a Critical Factor in Determining the Efficiency of Photoelectrodes: The Case of Nickel (II) Hydroxide on Vanadate Photoanodes. Appl. Catal. B Environ. 2017, 217, 437–447.
(81) Zhang, X.; Wang, R.; Li, F.; An, Z.; Pu, M.; Xiang, X. Enhancing Photoelectrochemical Water Oxidation Efficiency of BiVO4 Photoanodes by a Hybrid Structure of Layered Double Hydroxide and Graphene. Ind. Eng. Chem. Res. 2017, 56 (38), 10711–10719.
(82) He, W.; Wang, R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. Enhanced Photoelectrochemical Water Oxidation on a BiVO4 Photoanode Modified with Multi-Functional Layered Double Hydroxide Nanowalls. J. Mater. Chem. A 2015, 3 (35), 17977–17982.
(83) Zhu, Y.; Ren, J.; Yang, X.; Chang, G.; Bu, Y.; Wei, G.; Han, W.; Yang, D. Interface Engineering of 3D BiVO4/Fe-Based Layered Double Hydroxide Core/Shell Nanostructures for Boosting Photoelectrochemical Water Oxidation. J. Mater. Chem. A 2017, 7, 9952–9959.
(84) Wu, B. E.; Chiang, C. Y. Photochemical Metal Organic Deposition of FeOx Catalyst on BiVO4 for Improving Solar-Driven Water Oxidation Efficiency. J. Taiwan Inst. Chem. Eng. 2017, 80, 1014–1021.
(85) Gan, J.; Rajeeva, B. B.; Wu, Z.; Penley, D.; Liang, C.; Tong, Y.; Zheng, Y. Plasmon-Enhanced Nanoporous BiVO4 Photoanodes for Efficient Photoelectrochemical Water Oxidation. Nanotechnology 2016, 27 (23), 235401.
(86) Gan, J.; Lu, X.; Rajeeva, B. B.; Menz, R.; Tong, Y.; Zheng, Y. Efficient Photoelectrochemical Water Oxidation over Hydrogen-Reduced Nanoporous BiVO4 with Ni-Bi Electrocatalyst. ChemElectroChem 2015, 2 (9), 1385–1395.
(87) Zhang, Y.; Wang, D.; Zhang, X.; Chen, Y.; Kong, L.; Chen, P.; Wang, Y.; Wang, C.; Wang, L.; Liu, Y. Enhanced Photoelectrochemical Performance of Nanoporous BiVO4 Photoanode by Combining Surface Deposited Cobalt-Phosphate with Hydrogenation Treatment. Electrochim. Acta 2016, 195, 51–58. https://doi.org/10.1016/j.electacta.2016.02.137.
(88) Zhang, Y.; Wang, D.; Zhang, X.; Chen, Y.; Kong, L.; Chen, P.; Wang, Y.; Wang, C.; Wang, L.; Liu, Y. Enhanced Photoelectrochemical Performance of Nanoporous BiVO4 Photoanode by Combining Surface Deposited Cobalt-Phosphate with Hydrogenation Treatment. Electrochim. Acta 2016, 195, 51–58. https://doi.org/10.1016/j.electacta.2016.02.137.
(89) Tan, H. L.; Wen, X.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. J Phys Chem Lett 2016, 7 (7), 1400–1405.
(90) Ma, D.-K.; Guan, M.-L.; Liu, S.-S.; Zhang, Y.-Q.; Zhang, C.-W.; He, Y.-X.; Huang, S.-M. Controlled Synthesis of Olive-Shaped Bi2S3/BiVO4 Microspheres through a Limited Chemical Conversion Route and Enhanced Visible-Light-Responding Photocatalytic Activity. Dalt. Trans. 2012, 41 (18), 5581–5586.
(91) Dong, S.; Feng, J.; Li, Y.; Hu, L.; Liu, M.; Wang, Y.; Pi, Y.; Sun, J.; Sun, J. Shape-Controlled Synthesis of BiVO4 Hierarchical Structures with Unique Natural-Sunlight-Driven Photocatalytic Activity. Appl. Catal. B Environ. 2014, 152–153 (1), 413–424.
(92) Bunaciu, A. A.; gabriela Udriştioiu, E.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45 (4), 289–299. https://doi.org/6.
(93) Krol, R. Photoelectrochemical Measurements. In Photoelectrochemical Hydrogen Production; van de Krol, R., Grätzel, M., Eds.; Springer US: Boston, MA, 2012; pp 69–117.
(94) Ma, Y.; Pendlebury, S. R.; Reynal, A.; Le Formal, F.; Durrant, J. R. Dynamics of Photogenerated Holes in Undoped BiVO4 Photoanodes for Solar Water Oxidation. Chem. Sci. 2014, 5 (8), 2964–2973.
(95) Huang, H.; He, Y.; Du, X.; Chu, P. K.; Zhang, Y. A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI P–n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis. ACS Sustain. Chem. Eng. 2015, 3 (12), 3262–3273.
(96) Jeong, H. W.; Jeon, T. H.; Jang, J. S.; Choi, W.; Park, H. Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance. J. Phys. Chem. C 2013, 117 (18), 9104–9112.
(97) Galembeck, A.; Alves, O. L. BiVO4 Thin Film Preparation by Metalorganic Decomposition. Thin Solid Films 2000, 365 (1), 90–93.
(98) Huo, T.; Zhang, X.; Dong, X.; Zhang, X.; Ma, C.; Wang, G. Photonic Crystal Coupled Porous BiVO4 Hybrid for Efficient Photocatalysis under Visible Light. J. Mater. Chem. A 2014, 2 (41), 17366–17370.
(99) Feng, C.; Jiao, Z.; Li, S.; Zhang, Y.; Bi, Y. Facile Fabrication of BiVO4 Nanofilms with Controlled Pore Size and Their Photoelectrochemical Performances. Nanoscale 2015, 7 (48), 20374–20379.
(100) Alarcon-Llado, E.; Chen, L.; Hettick, M.; Mashouf, N.; Lin, Y.; Javey, A.; Ager, J. W. BiVO4 Thin Film Photoanodes Grown by Chemical Vapor Deposition. Phys. Chem. Chem. Phys. 2014, 16 (4), 1651–1657.
(101) Luo, W.; Wang, Z.; Wan, L.; Li, Z.; Yu, T.; Zou, Z. Synthesis, Growth Mechanism and Photoelectrochemical Properties of BiVO4 Microcrystal Electrodes. J. Phys. D. Appl. Phys. 2010, 43 (40), 405402.
(102) da Silva, M. R.; Scalvi, L. V. A.; Neto, V. S. L.; Dall’Antonia, L. H. Dip-Coating Deposition of Resistive BiVO4 Thin Film and Evaluation of Their Photoelectrochemical Parameters under Distinct Sources Illumination. J. Solid State Electrochem. 2016, 20 (6), 1527–1538.
(103) Liang, Y.; Tsubota, T.; Mooij, L. P. a; Van De Krol, R. Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes. J. Phys. Chem. C 2011, 115 (35), 17594–17598.
(104) McDonald, K. J.; Choi, K.-S. A New Electrochemical Synthesis Route for a BiOI Electrode and Its Conversion to a Highly Efficient Porous BiVO4 Photoanode for Solar Water Oxidation. Energy Environ. Sci. 2012, 5 (9), 8553.
(105) Kang, D.; Park, Y.; Hill, J. C.; Choi, K. S. Preparation of Bi-Based Ternary Oxide Photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 Using Dendritic Bi Metal Electrodes. J. Phys. Chem. Lett. 2014, 5 (17), 2994–2999.
(106) Brack, P.; Sagu, J. S.; Peiris, T. A. N.; McInnes, A.; Senili, M.; Wijayantha, K. G. U.; Marken, F.; Selli, E. Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chem. Vap. Depos. 2015, 21 (1-2–3), 41–45.
(107) Schäf, O.; Ghobarkar, H.; Knauth, P. Hydrothermal Synthesis of Nanomaterials. In Nanostructured Materials SE - 2; Knauth, P., Schoonman, J., Eds.; Electronic Materials: Science & Technology; Springer US, 2002; Vol. 8, pp 23–41.
(108) Vo, T.-G.; Chiu, J.-M.; Chiang, C.-Y.; Tai, Y. Solvent-Engineering Assisted Synthesis and Characterization of BiVO4 Photoanode for Boosting the Efficiency of Photoelectrochemical Water Splitting. Sol. Energy Mater. Sol. Cells 2017, 166, 212–221.
(109) Gong, H.; Freudenberg, N.; Nie, M.; van de Krol, R.; Ellmer, K. BiVO4 Photoanodes for Water Splitting with High Injection Efficiency, Deposited by Reactive Magnetron Co-Sputtering. AIP Adv. 2016, 6 (4), 45108.
(110) Chen, L.; Wang, J.; Meng, D.; Xing, Y.; Wang, C.; Li, F.; Wang, Y.; Wu, X. Enhanced Photocatalytic Activity of Hierarchically Structured BiVO4 Oriented along {040} Facets with Different Morphologies. Mater. Lett. 2015, 147, 1–3.
(111) Yu, J.; Zhang, Y.; Kudo, A. Synthesis and Photocatalytic Performances of BiVO4 by Ammonia Co-Precipitation Process. J. Solid State Chem. 2009, 182 (2), 223–228.
(112) Liu, J.; Wang, H.; Wang, S.; Yan, H. Hydrothermal Preparation of BiVO4 Powders. Mater. Sci. Eng. B 2003, 104 (1–2), 36–39.
(113) Timmaji, H. K.; Chanmanee, W.; De Tacconi, N. R.; Rajeshwar, K. Solution Combustion Synthesis of BiVO4 Nanoparticles: Effect of Combustion Precursors on the Photocatalytic Activity. J. Adv. Oxid. Technol. 2011, 14 (1), 93–105.
(114) Yu, J.; Kudo, A. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Adv. Funct. Mater. 2006, 16 (16), 2163–2169.
(115) Liu, X.; Liu, Y.; Su, J.; Li, M.; Guo, L. Facile Preparation of BiVO4 Nanoparticle Film by Electrostatic Spray Pyrolysis for Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2015, 40 (38), 12964–12972.
(116) Loiudice, A.; Ma, J.; Drisdell, W. S.; Mattox, T. M.; Cooper, J. K.; Thao, T.; Giannini, C.; Yano, J.; Wang, L. W.; Sharp, I. D.; et al. Bandgap Tunability in Sb-Alloyed BiVO4 Quaternary Oxide Ass Visible Light Absorbers for Solar Fuel Applications. Adv. Mater. 2015, 27 (42), 6733–6740.
(117) Luo, Q.; Zhang, L.; Chen, X.; Tan, O. K.; Leong, K. C. Mechanochemically Synthesized M-BiVO4 Nanoparticles for Visible Light Photocatalysis. RSC Adv. 2016, 6 (19), 15796–15802.
(118) Ma, D. K.; Guan, M. L.; Liu, S. S.; Zhang, Y. Q.; Zhang, C. W.; He, Y. X.; Huang, S. M. Controlled Synthesis of Olive-Shaped Bi2S3/BiVO4 Microspheres through a Limited Chemical Conversion Route and Enhanced Visible-Light-Responding Photocatalytic Activity. Dalt. Trans 2012, 41 (18), 5581–5586.
(119) Li, H.; Yu, K.; Lei, X.; Guo, B.; Fu, H.; Zhu, Z. Hydrothermal Synthesis of Novel MoS2/BiVO4 Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation. J. Phys. Chem. C 2015, 119 (39), 22681–22689.
(120) Ge, M.; Liu, L.; Chen, W.; Zhou, Z. Sunlight-Driven Degradation of Rhodamine B by Peanut-Shaped Porous BiVO4 Nanostructures in the H2O2-Containing System. CrystEngComm 2012, 14 (3), 1038–1044.
(121) Ma, L.; Li, W. H.; Luo, J. H. Solvothermal Synthesis and Characterization of Well-Dispersed Monoclinic Olive-like BiVO4 Aggregates. Mater. Lett. 2013, 102–103, 65–67.
(122) Ghafarian-Zahmatkesh, H.; Javanbakht, M.; Ghaemi, M. Ethylene Glycol-Assisted Hydrothermal Synthesis and Characterization of Bow-Tie-like Lithium Iron Phosphate Nanocrystals for Lithium-Ion Batteries. J. Power Sources 2015, 284, 339–348.
(123) Chen, L.; Alarcón-Lladó, E.; Hettick, M.; Sharp, I. D.; Lin, Y.; Javey, A.; Ager, J. W. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. J. Phys. Chem. C 2013, 117 (42), 21635–21642.
(124) Thalluri, S. M.; Martinez Suarez, C.; Hussain, M.; Hernandez, S.; Virga, A.; Saracco, G.; Russo, N. Evaluation of the Parameters Affecting the Visible-Light-Induced Photocatalytic Activity of Monoclinic BiVO4 for Water Oxidation. Ind. Eng. Chem. Res. 2013, 52 (49), 17414–17418.
(125) Qin, D.-D.; Wang, T.; Song, Y.-M.; Tao, C.-L. Reduced Monoclinic BiVO4 for Improved Photoelectrochemical Oxidation of Water under Visible Light. Dalt. Trans. 2014, 43 (21), 7691.
(126) Jia, Q.; Iwashina, K.; Kudo, A. Facile Fabrication of an Efficient BiVO4 Thin Film Electrode for Water Splitting under Visible Light Irradiation. Proc. Natl. Acad. Sci. 2012, 109 (29), 11564–11569.
(127) Sayama, K.; Nomura, A.; Zou, Z.; Abe, R.; Abe, Y.; Arakawa, H. Photoelectrochemical Decomposition of Water on Nanocrystalline BiVO4 Film Electrodes under Visible Light. Chem. Commun. 2003, 23 (23), 2908–2909.
(128) Mazloomi, S. K.; Sulaiman, N. Influencing Factors of Water Electrolysis Electrical Efficiency. Renew. Sustain. Energy Rev. 2012, 16 (6), 4257–4263.
(129) Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C. Visible Light Driven Overall Water Splitting Using Cocatalyst/BiVO4 Photoanode with Minimized Bias. Phys. Chem. Chem. Phys. 2013, 15 (13), 4589–4595.
(130) Liang, Y.; Messinger, J. Improving BiVO4 Photoanodes for Solar Water Splitting through Surface Passivation. Phys. Chem. Chem. Phys. 2014, 16 (24), 12014–12020.
(131) He, H.; Berglund, S. P.; Rettie, A. J. E.; Chemelewski, W. D.; Xiao, P.; Zhang, Y.; Mullins, C. B. Synthesis of BiVO4 Nanoflake Array Films for Photoelectrochemical Water Oxidation. J. Mater. Chem. A 2014, 2 (24), 9371–9379.
(132) Nair, V.; Perkins, C. L.; Lin, Q.; Law, M. Textured Nanoporous Mo:BiVO4 Photoanodes with High Charge Transport and Charge Transfer Quantum Efficiencies for Oxygen Evolution. Energy Environ. Sci. 2016, 9 (4), 1412–1429.
(133) Seabold, J. A.; Zhu, K.; Neale, N. R. Efficient Solar Photoelectrolysis by Nanoporous Mo:BiVO4 through Controlled Electron Transport. Phys. Chem. Chem. Phys. 2014, 16 (3), 1121–1131.
(134) Aldakov, D.; Chappaz-Gillot, C.; Salazar, R.; Delaye, V.; Welsby, K. A.; Ivanova, V.; Dunstan, P. R. Properties of Electrodeposited CuSCN 2D Layers and Nanowires Influenced by Their Mixed Domain Structure. J. Phys. Chem. C 2014, 118 (29), 16095–16103.
(135) Chappaz-Gillot, C.; Salazar, R.; Berson, S.; Ivanova, V. Room Temperature Template-Free Electrodeposition of CuSCN Nanowires. Electrochem. commun. 2012, 24 (1), 1–4.
(136) Huang, M.-C.; Wang, T.; Tseng, Y.-T.; Wu, C.-C.; Lin, J.-C.; Hsu, W.-Y.; Chang, W.-S.; Chen, I.-C.; Peng, K.-C. Influence of Annealing on Microstructural and Photoelectrochemical Characteristics of CuSCN Thin Films via Electrochemical Process. J. Alloys Compd. 2015, 622 (Supplement C), 669–675.
(137) Zhang, Q.; Guo, H.; Feng, Z.; Lin, L.; Zhou, J.; Lin, Z. N-ZnO Nanorods/p-CuSCN Heterojunction Light-Emitting Diodes Fabricated by Electrochemical Method. Electrochim. Acta 2010, 55 (17), 4889–4894.
(138) Naik, R. R.; Singamaneni, S. Introduction: Bioinspired and Biomimetic Materials. Chem. Rev. 2017, 117 (20), 12581–12583.
(139) Ortiz, C.; Boyce, M. C. Bioinspired Structural Materials. Science (80-. ). 2008, 319 (5866), 1053–1054.
(140) Sun, L.; Huang, Y.; Anower Hossain, M.; Li, K.; Adams, S.; Wang, Q. Fabrication of TiO2/CuSCN Bulk Heterojunctions by Profile-Controlled Electrodeposition. J. Electrochem. Soc. 2012, 159 (5), D323–D327.
(141) Ye, K.-H.; Wang, Z.; Gu, J.; Xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S. Carbon Quantum Dots as a Visible Light Sensitizer to Significantly Increase the Solar Water Splitting Performance of Bismuth Vanadate Photoanodes. Energy Environ. Sci. 2017, 10 (2), 642–642.
(142) Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X. Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Lett. 2014, 14 (2), 1099–1105.
(143) Zhou, L.; Zhao, C.; Giri, B.; Allen, P.; Xu, X.; Joshi, H.; Fan, Y.; Titova, L. V; Rao, P. M. High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes. Nano Lett. 2016, 16 (6), 3463–3474.
(144) Dotan, H.; Sivula, K.; Gratzel, M.; Rothschild, A.; Warren, S. C. Probing the Photoelectrochemical Properties of Hematite Fe2O3 Electrodes Using Hydrogen Peroxide as a Hole Scavenger. Energy Environ. Sci. 2011, 4 (3), 958–964.
(145) Ezealigo, B. N.; Nwanya, A. C.; Simo, A.; Bucher, R.; Osuji, R. U.; Maaza, M.; Reddy, M. V; Ezema, F. I. A Study on Solution Deposited CuSCN Thin Films: Structural, Electrochemical, Optical Properties. Arab. J. Chem. 2017.
(146) Qiu, Y.; Liu, W.; Chen, W.; Chen, W.; Zhou, G.; Hsu, P.-C.; Zhang, R.; Liang, Z.; Fan, S.; Zhang, Y.; et al. Efficient Solar-Driven Water Splitting by Nanocone BiVO4-Perovskite Tandem Cells. Sci. Adv. 2016, 2 (6), e1501764.
(147) Zhan, F.; Xie, R.; Li, W.; Li, J.; Yang, Y.; Li, Y.; Chen, Q. In Situ Synthesis of G-C3N4/WO3 Heterojunction Plates Array Films with Enhanced Photoelectrochemical Performance. RSC Adv. 2015, 5 (85), 69753–69760.
(148) Yu, Q.; Meng, X.; Wang, T.; Li, P.; Ye, J. Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. Adv. Funct. Mater. 2015, 25 (18), 2686–2692.
(149) Zhang, L.; Lin, C. Y.; Valev, V. K.; Reisner, E.; Steiner, U.; Baumberg, J. J. Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting. Small 2014, 10 (19), 3970–3978.
(150) Baek, J. H.; Kim, B. J.; Han, G. S.; Hwang, S. W.; Kim, D. R.; Cho, I. S.; Jung, H. S. BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. ACS Appl. Mater. Interfaces 2017, 9 (2), 1479–1487.
(151) Trzesniewski, B. J.; Smith, W. A. Photocharged BiVO4 Photoanodes for Improved Solar Water Splitting. J. Mater. Chem. A 2016, 4 (8), 2919–2926.
(152) Zheng, X.; Sciacca, B.; Garnett, E. C.; Zhang, L. AgFeS2 -Nanowire-Modified BiVO4 Photoanodes for Photoelectrochemical Water Splitting. Chempluschem 2016, 81 (10), 1075–1082.
(153) Kim, E. S.; Kang, H. J.; Magesh, G.; Kim, J. Y.; Jang, J.-W.; Lee, J. S. Improved Photoelectrochemical Activity of CaFe2O4/BiVO4 Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation. ACS Appl. Mater. Interfaces Interfaces 2014, 6 (20), 17762–17769.
(154) He, W.; Wang, R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. Enhanced Photoelectrochemical Water Oxidation on a BiVO4 Photoanode Modified with Multi-Functional Layered Double Hydroxide Nanowalls. J. Mater. Chem. A 2015, 3 (35), 17977–17982.
(155) Lv, X.; Tao, L.; Cao, M.; Xiao, X.; Wang, M.; Shen, Y. Enhancing Photoelectrochemical Water Oxidation Efficiency via Self-Catalyzed Oxygen Evolution: A Case Study on TiO2. Nano Energy 2018, 44, 411–418.
(156) Yang‐Fan, X.; Xu‐Dong, W.; Hong‐Yan, C.; Dai‐Bin, K.; Cheng‐Yong, S. Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine Cobalt Iron Oxide Nanoparticle. Adv. Funct. Mater. 2016, 26 (24), 4414–4421.
(157) David, T. S.; Maurin, C.; Kevin, S.; Michael, G. Light‐Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis. Angew. Chemie Int. Ed. 2010, 49 (36), 6405–6408.
(158) Ke, F.; Fusheng, L.; Lei, W.; Quentin, D.; Hong, C.; Erik, G.; Junliang, S.; Licheng, S. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. ChemSusChem 2015, 8 (19), 3242–3247.
(159) Lei, W.; Xuemei, Z.; Truong, N. N.; Patrik, S. Plasmon‐Enhanced Photoelectrochemical Water Splitting Using Au Nanoparticles Decorated on Hematite Nanoflake Arrays. ChemSusChem 2015, 8 (4), 618–622.
(160) Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition Metal Based Layered Double Hydroxides Tailored for Energy Conversion and Storage. Mater. Today 2016, 19 (4), 213–226.
(161) Patel, R.; Park, J. T.; Patel, M.; Dash, J. K.; Gowd, E. B.; Karpoormath, R.; Mishra, A.; Kwak, J.; Kim, J. H. Transition-Metal-Based Layered Double Hydroxides Tailored for Energy Conversion and Storage. J. Mater. Chem. A 2018, 6, 12–29.
(162) Li, Z.; Shao, M.; An, H.; Wang, Z.; Xu, S.; Wei, M.; Evans, D. G.; Duan, X. Fast Electrosynthesis of Fe-Containing Layered Double Hydroxide Arrays toward Highly Efficient Electrocatalytic Oxidation Reactions. Chem. Sci. 2015, 6 (11), 6624–6631.
(163) Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Adv. Energy Mater. 2015, 5 (13), 1500245--n/a.
(164) Huang, Y.; Yu, Y.; Xin, Y.; Meng, N.; Yu, Y.; Zhang, B. Promoting Charge Carrier Utilization by Integrating Layered Double Hydroxide Nanosheet Arrays with Porous BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. Sci. China Mater. 2017, 60 (3), 193–207.
(165) Sayed, R. A.; Abd El Hafiz, S. E.; Gamal, N.; GadelHak, Y.; El Rouby, W. M. A. Co-Fe Layered Double Hydroxide Decorated Titanate Nanowires for Overall Photoelectrochemical Water Splitting. J. Alloys Compd. 2017, 728, 1171–1179.
(166) Fan, X.; Gao, B.; Wang, T.; Huang, X.; Gong, H.; Xue, H.; Guo, H.; Song, L.; Xia, W.; He, J. Layered Double Hydroxide Modified WO3 Nanorod Arrays for Enhanced Photoelectrochemical Water Splitting. Appl. Catal. A Gen. 2016, 528, 52–58.
(167) Chong, R.; Wang, B.; Su, C.; Li, D.; Mao, L.; Chang, Z.; Zhang, L. Dual-Functional CoAl Layered Double Hydroxide Decorated α-Fe2O3 as an Efficient and Stable Photoanode for Photoelectrochemical Water Oxidation in Neutral Electrolyte. J. Mater. Chem. A 2017, 5 (18), 8583–8590.
(168) Zhang, R.; Shao, M.; Xu, S.; Ning, F.; Zhou, L.; Wei, M. Photo-Assisted Synthesis of Zinc-Iron Layered Double Hydroxides/TiO2 Nanoarrays toward Highly-Efficient Photoelectrochemical Water Splitting. Nano Energy 2017, 33, 21–28.
(169) Wang, G.; Wang, B.; Su, C.; Li, D.; Zhang, L.; Chong, R.; Chang, Z. Enhancing and Stabilizing α-Fe2O3 Photoanode towards Neutral Water Oxidation: Introducing a Dual-Functional NiCoAl Layered Double Hydroxide Overlayer. J. Catal. 2018, 359, 287–295.
(170) Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y.; et al. Nickel-Vanadium Monolayer Double Hydroxide for Efficient Electrochemical Water Oxidation. Nat. Commun. 2016, 7.
(171) Yang, Q.; Li, T.; Lu, Z. Y.; Sun, X. M.; Liu, J. F. Hierarchical Construction of an Ultrathin Layered Double Hydroxide Nanoarray for Highly-Efficient Oxygen Evolution Reaction. Nanoscale 2014, 6 (20), 11789–11794.
(172) Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts. Chem. Commun. 2016, 52 (5), 908–911.
(173) Vo, T.-G.; Tai, Y.; Chiang, C.-Y. Unraveling Critical Effects of the Preoxidation Process toward Morphological Evolution and Intrinsic Properties of Novel ZnCoMn Trimetallic Hydroxides. Dalt. Trans. 2018, 47, 12061–12065.
(174) Liu, G.; Li, Z.; Hasan, T.; Chen, X.; Zheng, W.; Feng, W.; Jia, D.; Zhou, Y.; Hu, P. Vertically Aligned Two-Dimensional SnS2 Nanosheets with a Strong Photon Capturing Capability for Efficient Photoelectrochemical Water Splitting. J. Mater. Chem. A 2017, 5 (5), 1989–1995.
(175) Fan, X. L.; Gao, B.; Wang, T.; Huang, X. L.; Gong, H.; Xue, H. R.; Guo, H.; Song, L.; Xia, W.; He, J. P. Layered Double Hydroxide Modified WO3 Nanorod Arrays for Enhanced Photoelectrochemical Water Splitting. Appl. Catal. a-General 2016, 528, 52–58.
(176) Ma, K.; Liu, F.; Zhang, M.; Zhang, X.; Cheng, J. P. Core/Shell Microrod Arrays of NiO/Co-Fe Layered Double Hydroxides Deposited on Nickel Foam for Energy Storage and Conversion. Electrochim. Acta 2017, 225, 425–434.
(177) Li, Y.; Zhang, L.; Xiang, X.; Yan, D.; Li, F. Engineering of ZnCo-Layered Double Hydroxide Nanowalls toward High-Efficiency Electrochemical Water Oxidation. J. Mater. Chem. A 2014, 2 (33), 13250–13258.
(178) Liu, Y.; Liang, X.; Gu, L.; Zhang, Y.; Li, G.-D.; Zou, X.; Chen, J.-S. Corrosion Engineering towards Efficient Oxygen Evolution Electrodes with Stable Catalytic Activity for over 6000 Hours. Nat. Commun. 2018, 9 (1), 2609.
(179) Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139 (24), 8320–8328.
(180) Xu, D.; Rui, Y.; Li, Y.; Zhang, Q.; Wang, H. Zn-Co Layered Double Hydroxide Modified Hematite Photoanode for Enhanced Photoelectrochemical Water Splitting. Appl. Surf. Sci. 2015, 358 (Part A), 436–442.
(181) Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science (80-. ). 2014, 343 (6174), 990–994.
(182) Vo, T.-G.; Chiu, J.-M.; Tai, Y.; Chiang, C.-Y. Turnip-Inspired BiVO4/CuSCN Nanostructure with Close to 100% Suppression of Surface Recombination for Solar Water Splitting. Sol. Energy Mater. Sol. Cells 2018, 185, 415–424.
(183) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; et al. Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols. J. Mater. Res. 2010, 25 (01), 3–16. https://doi.org/doi:10.1557/JMR.2010.0020.
(184) Jeon, D.; Kim, H.; Lee, C.; Han, Y.; Gu, M.; Kim, B.-S.; Ryu, J. Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS Appl. Mater. Interfaces 2017, 9 (46), 40151–40161. https://doi.org/10.1021/acsami.7b09416.
(185) Eftekharinia, B.; Moshaii, A.; Dabirian, A.; Vayghan, N. S. Optimization of Charge Transport in a Co-Pi Modified Hematite Thin Film Produced by Scalable Electron Beam Evaporation for Photoelectrochemical Water Oxidation. J. Mater. Chem. A 2017, 5 (7), 3412–3424.
(186) Xi, L.; Wang, F.; Schwanke, C.; Abdi, F. F.; Golnak, R.; Fiechter, S.; Ellmer, K.; van de Krol, R.; Lange, K. M. In Situ Structural Study of MnPi-Modified BiVO4 Photoanodes by Soft X-Ray Absorption Spectroscopy. J. Phys. Chem. C 2017, 121 (36), 19668–19676.
(187) Bai, S.; Chu, H.; Xiang, X.; Luo, R.; He, J.; Chen, A. Fabricating of Fe2O3/BiVO4 Heterojunction Based Photoanode Modified with NiFe-LDH Nanosheets for Efficient Solar Water Splitting. Chem. Eng. J. 2018, 350, 148–156. https://doi.org/https://doi.org/10.1016/j.cej.2018.05.109.
(188) McAlpin, J. G.; Surendranath, Y.; Dincǎ, M.; Stich, T. A.; Stoian, S. A.; Casey, W. H.; Nocera, D. G.; Britt, R. D. EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral PH. J. Am. Chem. Soc. 2010, 132 (20), 6882–6883.
(189) McKendry, I. G.; Thenuwara, A. C.; Shumlas, S. L.; Peng, H.; Aulin, Y. V; Chinnam, P. R.; Borguet, E.; Strongin, D. R.; Zdilla, M. J. Systematic Doping of Cobalt into Layered Manganese Oxide Sheets Substantially Enhances Water Oxidation Catalysis. Inorg. Chem. 2018, 57 (2), 557–564.
(190) Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.; Waterhouse, G. I. N.; Huang, W.; Zhang, T. Defect‐Engineered Ultrathin Δ‐MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7 (18), 1700005.
(191) Zou, X.; Goswami, A.; Asefa, T. Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide. J. Am. Chem. Soc. 2013, 135 (46), 17242–17245.
(192) Deng, L.; Jingying, S.; Can, L. Transition‐Metal‐Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small 2018, 14 (23), 1704179.
(193) Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. 2016, 116 (22), 14120–14136.
(194) Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-Phosphate (Co-Pi) Catalyst Modified Mo-Doped BiVO4 Photoelectrodes for Solar Water Oxidation. Energy Environ. Sci. 2011, 4 (12), 5028.
(195) Zhao, X.; Zhou, C.; Han, B.; Ji, Z.; Wang, L.; Wu, J. Growth Mechanism of Curved Mg-Al-CO3 Layered Double Hydroxide Nanostructures in a One-Pot Assembly Procedure under Ambient Pressure. RSC Adv. 2015, 5 (26), 19955–19960.
(196) Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P. Vastly Enhanced BiVO4 Photocatalytic OER Performance by NiCoO4 as Cocatalyst. Adv. Mater. Interfaces 2017, 1700540, 1–10.
(197) Li, Y.; Zhao, C. Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chem. Mater. 2016, 28 (16), 5659–5666.
(198) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with “Co-Pi”-Coated Hematite Electrodes. J. Am. Chem. Soc. 2012, 134 (40), 16693–16700.
(199) Jin, K.; Park, J.; Lee, J.; Yang, K. D.; Pradhan, G. K.; Sim, U.; Jeong, D.; Jang, H. L.; Park, S.; Kim, D.; et al. Hydrated Manganese (II) Phosphate (Mn3(PO4)2.3H2O) as a Water Oxidation Catalyst. J. Am. Chem. Soc. 2014, 136 (20), 7435–7443.
(200) Yin, D.; Jin, Z.; Liu, M.; Gao, T.; Yuan, H.; Xiao, D. Microwave-Assisted Synthesis of the Cobalt-Iron Phosphates Nanosheets as an Efficient Electrocatalyst for Water Oxidation. Electrochim. Acta 2018, 260, 420–429.
(201) Xie, L.; Zhang, R.; Cui, L.; Liu, D.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; Sun, X. High-Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angew. Chemie - Int. Ed. 2017, 56 (4), 1064–1068.
(202) Vasileff, A.; Chen, S.; Qiao, S. Z. Three Dimensional Nitrogen-Doped Graphene Hydrogels with in Situ Deposited Cobalt Phosphate Nanoclusters for Efficient Oxygen Evolution in a Neutral Electrolyte. Nanoscale Horiz. 2016, 1 (1), 41–44.
(203) Zhong, D.; Liu, L.; Li, D.; Wei, C.; Wang, Q.; Hao, G.; Zhao, Q.; Li, J. Facile and Fast Fabrication of Iron-Phosphate Supported on Nickel Foam as a Highly Efficient and Stable Oxygen Evolution Catalyst. J. Mater. Chem. A 2017, 5 (35), 18627–18633.
(204) Guijarro, N.; Prévot, M. S.; Yu, X.; Jeanbourquin, X. A.; Bornoz, P.; Bourée, W.; Johnson, M.; Le Formal, F.; Sivula, K. A Bottom-Up Approach toward All-Solution-Processed High-Efficiency Cu(In,Ga)S2 Photocathodes for Solar Water Splitting. Adv. Energy Mater. 2016, 6 (7), 1501949.
(205) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D. R. Photo-Assisted Electrodeposition of Cobalt–phosphate (Co–Pi) Catalyst on Hematite Photoanodes for Solar Water Oxidation. Energy Environ. Sci. 2011, 4 (5), 1759.
(206) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation. J. Am. Chem. Soc. 2011, 133 (38), 14868–14871.
(207) Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Turner, J. A.; Brown, L. D.; Herring, A. M. Light Induced Water Oxidation on Cobalt-Phosphate (Co–Pi) Catalyst Modified Semi-Transparent, Porous SiO2–BiVO4 Electrodes. Phys. Chem. Chem. Phys. 2012, 14 (19), 7032–7039.
(208) Lee, D. K.; Choi, K.-S. Enhancing Long-Term Photostability of BiVO4 Photoanodes for Solar Water Splitting by Tuning Electrolyte Composition. Nat. Energy 2017, 3 (January), 53–60.
(209) An, X.; Hu, C.; Lan, H.; Liu, H.; Qu, J. Strongly Coupled Metal Oxide/Reassembled Carbon Nitride/Co-Pi Heterostructures for Efficient Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2018, 10 (7), 6424–6432.
(210) Saito, R.; Miseki, Y.; Sayama, K. Photoanode Characteristics of Multi-Layer Composite BiVO4 Thin Film in a Concentrated Carbonate Electrolyte Solution for Water Splitting. J. Photochem. Photobiol. A Chem. 2013, 258, 51–60.
(211) Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-Crystal Facet Engineering of BiVO4 Plate Photoanodes for Solar Fuel Production. Adv. Energy Mater. 2016, 6 (4), 1501754.
(212) Zhou, M.; Zhang, S.; Sun, Y.; Wu, C.; Wang, M.; Xie, Y. C-Oriented and {010} Facets Exposed BiVO4 Nanowall Films: Template-Free Fabrication and Their Enhanced Photoelectrochemical Properties. Chem. – An Asian J. 2010, 5 (12), 2515–2523.
(213) Xi, G.; Ye, J. Synthesis of Bismuth Vanadate Nanoplates with Exposed {001} Facets and Enhanced Visible-Light Photocatalytic Properties. Chem. Commun. 2010, 46 (11), 1893.
(214) Su, J.; Guo, L.; Yoriya, S.; Grimes, C. A. Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting. Cryst. Growth Des. 2010, 10 (2), 856–861.
(215) Yoon, H.; Mali, M. G.; Choi, J. Y.; Kim, M.; Choi, S. K.; Park, H.; Al-Deyab, S. S.; Swihart, M. T.; Yarin, A. L.; Yoon, S. S. Nanotextured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting. Langmuir 2015, 31 (12), 3727–3737.
(216) Zhang, B.; Shi, J.; Ding, C.; Chong, R.; Zhang, B.; Wang, Z.; Li, A.; Liang, Z.; Liao, S.; Li, C. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells Using Undoped and Tungsten-Doped Bismuth Vanadate Photoanodes. ChemSusChem 2015, 8 (23), 4049–4055.
(217) Chang, G.-L.; Wang, D.-G.; Zhang, Y.-Y.; Aldalbahi, A.; Wang, L.-H.; Li, Q.; Wang, K. ALD-Coated Ultrathin Al2O3 Film on BiVO4 Nanoparticles for Efficient PEC Water Splitting. Nucl. Sci. Tech. 2016, 27 (5), 108.
(218) Wang, Y.; Sun, J.; Li, J.; Zhao, X. Electrospinning Preparation of Nanostructured G-C3N4/BiVO4 Composite Films with an Enhanced Photoelectrochemical Performance. Langmuir 2017, 33 (19), 4694–4701.
(219) Gromboni, M. F.; Coelho, D.; Mascaro, L. H.; Pockett, A.; Marken, F. Enhancing Activity in a Nanostructured BiVO4 Photoanode with a Coating of Microporous Al2O3. Appl. Catal. B Environ. 2017, 200, 133–140.
(220) Xie, J.; Guo, C.; Yang, P.; Wang, X.; Liu, D.; Li, C. M. Bi-Functional Ferroelectric BiFeO3 Passivated BiVO4 Photoanode for Efficient and Stable Solar Water Oxidation. Nano Energy 2017, 31 (October 2016), 28–36.
(221) He, H.; Zhou, Y.; Ke, G.; Zhong, X.; Yang, M.; Bian, L.; Lv, K.; Dong, F. Improved Surface Charge Transfer in MoO3/BiVO4 Heterojunction Film for Photoelectrochemical Water Oxidation. Electrochim. Acta 2017, 257, 181–191.
(222) Ye, K.-H.; Chai, Z.; Gu, J.; Yu, X.; Zhao, C.; Zhang, Y.; Mai, W. BiOI–BiVO4 Photoanodes with Significantly Improved Solar Water Splitting Capability: P–n Junction to Expand Solar Adsorption Range and Facilitate Charge Carrier Dynamics. Nano Energy 2015, 18, 222–231.
(223) Qiu, W.; Huang, Y.; Tang, S.; Ji, H.; Tong, Y. Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO4 Photoanode for Solar-Assisted Water Electrolysis. J. Phys. Chem. C 2017, 121 (32), 17150–17159.
(224) Shaddad, M. N.; Ghanem, M. A.; Al-Mayouf, A. M.; Gimenez, S.; Bisquert, J.; Herraiz-Cardona, I. Cooperative Catalytic Effect of ZrO2 and α-Fe2O3 Nanoparticles on BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting. ChemSusChem 2016, 9 (19), 2779–2783.
(225) Kim, T. W.; Choi, K.-S. Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer. J. Phys. Chem. Lett. 2016, 7 (3), 447–451.
(226) McDowell, M. T.; Lichterman, M. F.; Spurgeon, J. M.; Hu, S.; Sharp, I. D.; Brunschwig, B. S.; Lewis, N. S. Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO2/Ni Coatings. J. Phys. Chem. C 2014, 118 (34), 19618–19624.
(227) Pilli, S. K.; Summers, K.; Chidambaram, D. Ni-Ci Oxygen Evolution Catalyst Integrated BiVO4 Photoanodes for Solar Induced Water Oxidation. RSC Adv. 2015, 5 (58), 47080–47089.
(228) Lichterman, M. F.; Shaner, M. R.; Handler, S. G.; Brunschwig, B. S.; Gray, H. B.; Lewis, N. S.; Spurgeon, J. M. Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition. J. Phys. Chem. Lett. 2013, 4, 4188–4191.
(229) Wan, X.; Su, J.; Guo, L. Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. Eur. J. Inorg. Chem. 2018, 2018 (22), 2557–2563.
(230) Kan, M.; Xue, D.; Jia, A.; Qian, X.; Yue, D.; Jia, J.; Zhao, Y. A Highly Efficient Nanoporous BiVO4 Photoelectrode with Enhanced Interface Charge Transfer Co-Catalyzed by Molecular Catalyst. Appl. Catal. B Environ. 2018, 225 (December 2017), 504–511.
(231) Liu, W.; Liu, H.; Dang, L.; Zhang, H.; Wu, X.; Yang, B.; Li, Z.; Zhang, X.; Lei, L.; Jin, S. Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution. Adv. Funct. Mater. 2017, 27 (14), 1603904--n/a.
(232) de Respinis, M.; Joya, K. S.; De Groot, H. J. M.; D’Souza, F.; Smith, W. A.; van de Krol, R.; Dam, B. Solar Water Splitting Combining a BiVO4 Light Absorber with a Ru-Based Molecular Cocatalyst. J. Phys. Chem. C 2015, 119 (13), 7275–7281.
(233) Hegner, F. S.; Herraiz-Cardona, I.; Cardenas-Morcoso, D.; López, N.; Galán-Mascarós, J.-R.; Gimenez, S. Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. Acs Appl. Mater. Interfaces Interfaces 2017, 9 (43), 37671–37681.

無法下載圖示 全文公開日期 2024/01/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2024/01/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE