簡易檢索 / 詳目顯示

研究生: Dessalew Berihun Adam
Dessalew Berihun Adam
論文名稱: 建構以釕為基礎的陽極材料之碘化物氧化電解槽設計: 高附加價值氫氣之生 產
Design of Ru-Based Anode Materials for Iodide Oxidation-Based Electrolyzer: A Value-Added Hydrogen Production
指導教授: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Hsisheng Teng
Di-Yan Wang
Di-Yan Wang
Meng-Che Tsai
Meng-Che Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 151
中文關鍵詞: Hydrogen productionOxygen evolution reactionIodide oxidation reactionFaradaic efficiency3D web-like titaniaSingle-atom alloy
外文關鍵詞: Hydrogen production, Oxygen evolution reaction, Iodide oxidation reaction, Faradaic efficiency, 3D web-like titania, Single-atom alloy
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫(H2)作為一種無碳乾淨的能源,是緩解現今與未來社會能源需求中最有吸引力和最環保的選擇。其中電解水產氫是最突出和前衛的技術,但它需要較高的過電位來驅動緩慢的陽極析氧反應。本論文展示了三種將水電解與只需要較低的過電位使更易氧化的陽極化學原料混合的方法。
    在第一種方法中,我們通過使用碘化物氧化反應開發了一種新型混合電解材料,我們製造了釕錫表面合金氧化物作為碘化物輔助混合水電解的陽極電催化劑。 以乙二醇為還原劑,通過金紅石型氧化錫與釕離子的水熱反應,在金紅石型氧化錫表面製備釕-錫合金氧化物。將IOR電解與OER電解以釕-錫表面合金氧化物作為陽極電催化劑進行比較,在雙電極系統中,釕-錫表面合金氧化物陽極上在IOR 的電解表現出1.01 V的超低電壓,以達到10 mA cm-2的基準電流密度,而在水電解OER的電解則是需要電壓為1.58 V,才能實現相同的電流密度。該系統在陰極產生了具有達到將近100 %法拉第效率的氫能。
    在第二種方法中,我們成功加入負載在三維網狀材料上之混合合金氧化物來提高IOR電催化的穩定性。在本實驗中,我們展示了一種在3D網狀二氧化鈦上開發自支撐釕鈦混合合金氧化物(RuTiO)的簡便方法用於IOR電解。即使與熱力學析氧反應電位相比,在IOR系統中達到10 mA cm-2電流密度的電位也顯著降低了 220 mV,由於碘化物氧化的熱力學特性,開發的RuTiO需要1.09 V的超低電壓,才能為酸性介質進行IOR電解以提供10 mA cm-2的基準電流密度。在IOR的電解中,陰極電極處產生H2的法拉第效率幾乎為100%,也獲得了36小時持久穩定性測試,表明釕-鈦混合氧化物可作為陽極電催化劑用於IOR的節能電解生產高附加價值H2。這一發現將為設計其他低成本的過渡金屬混合合金氧化物電催化劑鋪路,該催化劑基於3D網狀二氧化鈦,具有更高的催化活性和更長的IOR電解穩定性。
    在第三種方法中,我們研究了單原子合金催化劑的合成,以提高IOR催化活性並降低貴金屬含量。在這裡,我們展示了一種簡單的合成釕鈦單原子合金催化劑的步驟,該催化劑嵌入二氧化鈦(Ru SAAC)以改善碘化物氧化反應。因此,Ru SAAC 表現出優異的IOR活性,提供100 mV的低過電位以實現10 mA cm-2的電流密度和36 mV dec-1 的小Tafel斜率,表明在酸性電解質條件下具有熱力學有利和動力學快速的催化性能。與第一項和第二項工作相比,Ru SAAC表現出84.4%的最高法拉第效率,這表明由於最大原子效率,在IOR的電解中具有快速動力學。


    Hydrogen (H2), as a non-carbon clean energy source, is the most attractive and environmentally friendly option to alleviate the future energy demand of society. Its production by water electrolysis is the most prominent and a front-running technology, but it requires the high overpotential to drive the sluggish anodic oxygen evolution reaction. This thesis has demonstrated three approaches to hybridize water electrolysis with more readily oxidizable anodic chemical feedstocks requiring low overpotentials.
    In the first approach, we have developed a new type of hybrid electrolysis by employing iodide oxidation reaction. We fabricated the ruthenium-tin surface alloy oxide as anode electrocatalyst for iodide-assisted hybrid water electrolysis. The ruthenium-tin surface alloy oxide was prepared on the surface of rutile tin oxide through hydrothermal reaction of rutile tin oxide with the ruthenium ions in the presence of ethylene glycol as reducing agent. IOR-based electrolysis was compared with OER-based electrolysis over ruthenium-tin surface alloyed oxide as anode electrocatalyst. In a two-electrode system, the IOR-based electrolysis on ruthenium-tin surface alloyed oxide anode exhibits an ultra-low cell voltage of 1.01 V to reach a benchmark current density of 10 mA cm-2 compared OER-based electrolysis which needs a cell voltage of 1.58 V to achieve the same current density by the same anode electrocatalyst. This system produced a value-added hydrogen at the cathode with  100% Faradic efficiency.
    In the second approach, we improved the IOR stability of the active electrocatalyst by incorporating mixed alloy oxide supported on three-dimensional web-like material. Here, we show a facile process to develop a self-supported ruthenium-titanium mixed alloy oxide (RuTiO) on a 3D web-like titania for IOR-based electrolysis. The potential for IOR to reach the current density of 10 mA cm-2 is remarkably reduced by 220 mV even compared to the thermodynamic oxygen evolution reaction potential. Because of the thermodynamic feature of iodide oxidation, the developed RuTiO require, an ultralow cell voltage of 1.09 V to afford a benchmark current density of 10 mA cm-2 for IOR-based electrolysis in acidic media. The Faradaic efficiency for H2 production is almost 100% at the cathode electrode in the IOR-based electrolysis. The long-lasting stability without degradation for 36 hours was obtained indicating that the ruthenium-titanium mixed oxide could be used as anode electrocatalyst in energy-saving IOR-based electrolysis for a value-added H2 production. This finding will pave a route to design other low-cost transition metal mixed alloy oxide electrocatalysts engineered on 3D web-like titania with improved catalytic activity and prolonged stability for IOR-based electrolysis.
    In the third approach, we studied the synthesis of single-atom alloy catalyst to increase the IOR catalytic activity and to reduce the precious metal content. Here, we show a simple route for synthesis of ruthenium-titanium single-atom alloy catalyst embedded on titania (Ru SAAC) for improved iodide oxidation reaction. Thus, the Ru SAAC exhibited an excellent IOR activity which provided a low overpotential of 100 mV to achieve a current density of 10 mA cm-2 and a small Tafel slopes of 36 mV dec-1 indicating thermodynamically favorable and kinetically fast catalytic property in acidic electrolyte. The Ru SAAC exhibited the highest voltage efficiency of 84.4 % compared to the first and the second work which indicates its fast kinetics for IOR-based electrolysis due to the maximum atom efficiency.

    Contents 摘要 i Abstract iii Acknowledgments v Table of Content vii Index of Tables xxi List of Units and Abbreviations xxiii Chapter 1: General Background 1 1.1 The Global Energy Challenges 1 1.2 Challenges of Water Electrolysis and Efficiency Evaluation Parameters 3 1.2.1 Onsetoverpotential and Overpotential 3 1.2.2 Exchange current density 7 1.2.3 Tafel slope 7 1.2.3 Faradaic efficiency 7 1.2.4 Energy or Voltage efficiency 8 Chapter 2: Development of Hybrid Water Electrolysis 11 2.1 Criteria for Choosing of Value-added anodic chemicals 11 2.2 Value-Added Anodic Oxidations Reaction Based-Electrolysis 12 2.2.2 Amine Oxidation Reaction Based-Electrolysis 13 2.2.3 Aldehyde Oxidation Reaction Based-Electrolysis 14 2.2.4 Alcohol Oxidation Reaction Based-Electrolysis 15 2.2.5 Iodide Oxidation Reaction Based-Electrolysis 16 2.3 Electrocatalyst material design 19 2.3 Ru-based anode materials 20 2.3.1 Ru-based Dimensionally Stable Anodes 20 2.3.2. Ru-based oxides catalysts 22 2.3.3 Ru-based alloy catalysts 23 2.3.4 Ru-single-atom catalysts 23 2.4. Motivation and Objectives of the Study 25 2.4.1. Motivation 25 2.4.2. Objectives 26 Chapter 3: Experimental Section and Characterizations 29 3.1. Chemicals and Reagents 29 3.1. Synthesis of Ruthenium Oxide 30 3.2 Synthesis of Rutile SnO2 support material 31 3.3 Synthesis of Titanium Dioxide Nanoweb 32 3.4 Sample Preparation for Characterizations and Measurements 33 3.5. Materials Characterization Techniques 33 3.5.1. Scanning electron microscopy 33 3.5.3. Focus ion beam 34 3.5.2. Transmission electron microscopy 34 3.5.3. X-ray powder diffraction 35 3.5.4. Raman spectroscopy 35 3.5.5. X-ray photoelectron spectroscopy 35 3.5.6. X-ray absorption spectroscopy 36 3.6. Electrochemical Measurements 36 Chapter 4: Iodide Oxidation Reaction Catalyzed by Ruthenium-Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously 37 4.1. Introduction 37 4.2. Result and Discussion 39 4.2.1. Synthesis and Morphology Characterizations 39 4.2.2 Structural Characterizations 41 4.2.3 Electrochemical Characterizations 55 4.3. Summary 71 Chapter 5: Self-Supported Ruthenium-Titanium Mixed Oxide on 3D Web-like Titania for Iodide Electrolysis 73 5.1 Introduction 73 5.2 Results and Discussion 75 5.2.1 Materials Synthesis and Characterizations 75 5.3 Electrochemical Performance 94 5.4 Summary 99 Chapter 6: Boosting Hydrogen Production from Iodide Electrolysis over Ruthenium Single-Atom Alloy Electrocatalyst at Low Overpotential 101 6.1 Introduction 101 6.2 Results and Discussion 102 6.2.1 Material Synthesis and Characterizations 102 6.3 Electrochemical Performance 115 6.4 Summary 118 Chapter 7: Summary and perspectives 119 7.1 Summary 119 7.2 Perspectives 121 References 123

    1. Elmer, T.; Worall, M.; Wu, S.; Riffat, S. B., Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews 2015, 42, 913-931.
    2. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalyis Today 2006, 115 (1-4), 2-32.
    3. Rees, N. V.; Compton, R. G., Carbon-free energy: a review of ammonia-and hydrazine-based electrochemical fuel cells. Energy Environmental Science 2011, 4 (4), 1255-1260.
    4. Mohideen, M. M.; Ramakrishna, S.; Prabu, S.; Liu, Y., Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry 2021, 59, 688-705.
    5. Momirlan, M.; Veziroglu, T., Current status of hydrogen energy. Renewable and Sustainable Energy Reviews 2002, 6 (1-2), 141-179.
    6. Mallouk, T. E., Water electrolysis: Divide and conquer. Natature Chemistry 2013, 5 (5), 362-363.
    7. Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Review Chemistry 2017, 1 (1), 1-13.
    8. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.-J.; Wang, Z. L., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 2017, 37, 136-157.
    9. Gong, M.; Dai, H., A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research 2015, 8 (1), 23-39.
    10. Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of American Chemical Society 2013, 135 (23), 8452-8455.
    11. Xia, Z., Hydrogen evolution: guiding principles. Nature Energy 2016, 1 (10), 1-2.
    12. Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A., Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews 2001, 101 (4), 953-996.
    13. Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R., The role of hydrogen and fuel cells in the global energy system. Energy Environmental Science 2019, 12 (2), 463-491.
    14. Maljusch, A.; Ventosa, E.; Rincón, R. A.; Bandarenka, A. S.; Schuhmann, W., Revealing onset potentials using electrochemical microscopy to assess the catalytic activity of gas-evolving electrodes. Electrochemistry communications 2014, 38, 142-145.
    15. Niu, S.; Li, S.; Du, Y.; Han, X.; Xu, P., How to reliably report the overpotential of an electrocatalyst. ACS Energy Letters 2020, 5 (4), 1083-1087.
    16. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A 2016, 4 (45), 17587-17603.
    17. Spoeri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P., The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angewandte Chemie 2017, 56 (22), 5994-6021.
    18. Kim, J. S.; Kim, B.; Kim, H.; Kang, K., Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials 2018, 8 (11), 1702774.
    19. Xu, Y.; Tu, W.; Zhang, B.; Yin, S.; Huang, Y.; Kraft, M.; Xu, R., Nickel Nanoparticles Encapsulated in Few‐Layer Nitrogen‐Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials 2017, 29 (11), 1605957.
    20. Xu, Y.; Zhang, B., Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 2019, 6 (13), 3214-3226.
    21. Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X., First‐row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 2017, 13 (45), 1701931.
    22. Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y., Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Advanced materials 2017, 29 (14), 1605838.
    23. Li, M.; Liu, H.; Lv, T.; Ding, M., Synergistic effect of the valence bond environment and exposed crystal facets of the TiO 2/SnS 2 heterojunction for achieving enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2018, 6 (8), 3488-3499.
    24. Jia, Q.; Gao, Y.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G.; Peng, W.; Wang, S., Cobalt nanoparticles embedded in N-doped carbon on carbon cloth as free-standing electrodes for electrochemically-assisted catalytic oxidation of phenol and overall water splitting. Carbon 2019, 155, 287-297.
    25. Nickell, R. A.; Zhu, W. H.; Payne, R. U.; Cahela, D. R.; Tatarchuk, B. J., Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide. Journal of power sources 2006, 161 (2), 1217-1224.
    26. Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W., Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy) hydroxide. Nature communications 2018, 9 (1), 1-12.
    27. Li, S.; Liu, J.; Yin, Z.; Ren, P.; Lin, L.; Gong, Y.; Yang, C.; Zheng, X.; Cao, R.; Yao, S., Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catalysis 2019, 10 (1), 907-913.
    28. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports 2015, 5 (1), 1-21.
    29. Zhu, W.; Chen, W.; Yu, H.; Zeng, Y.; Ming, F.; Liang, H.; Wang, Z., NiCo/NiCo-OH and NiFe/NiFe-OH Core Shell Nanostructures for Water Splitting Electrocatalysis at Large Currents. Applied Catalysis B: Environmental 2020, 119326.
    30. Amores, E.; Sánchez, M.; Rojas, N.; Sánchez-Molina, M., Renewable hydrogen production by water electrolysis. Sustainable Fuel Technologies Handbook, Elsevier: 2021; pp 271-313.
    31. Lhermitte, C. R.; Sivula, K., Alternative oxidation reactions for solar-driven fuel production. ACS Catalysis 2019, 9 (3), 2007-2017.
    32. Reid, L. M.; Li, T.; Cao, Y.; Berlinguette, C. P., Organic chemistry at anodes and photoanodes. Sustainable Energy Fuels 2018, 2 (9), 1905-1927.
    33. You, B.; Liu, X.; Jiang, N.; Sun, Y., A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. Journal of American Chemical Society 2016, 138 (41), 13639-13646.
    34. Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y., Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catalysis 2018, 8 (1), 1-7.
    35. Zhu, D.; Guo, C.; Liu, J.; Wang, L.; Du, Y.; Qiao, S.-Z., Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical communications 2017, 53 (79), 10906-10909.
    36. Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B., Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angewandte Chemie 2018, 57 (40), 13163-13166.
    37. Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B., Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angewandte Chemie International Edition 2018, 57 (40), 13163-13166.
    38. Zhang, R.; Jiang, S.; Rao, Y.; Chen, S.; Yue, Q.; Kang, Y., Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer. Green Chemistry 2021, 23 (6), 2525-2530.
    39. You, B.; Jiang, N.; Liu, X.; Sun, Y., Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble‐Metal‐Free Bifunctional Electrocatalyst. Angewandte Chemie 2016, 128 (34), 10067-10071.
    40. Weidner, J.; Barwe, S.; Sliozberg, K.; Piontek, S.; Masa, J.; Apfel, U.-P.; Schuhmann, W., Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Organic Chemistry 2018, 14 (1), 1436-1445.
    41. Weidner, J.; Barwe, S.; Sliozberg, K.; Piontek, S.; Masa, J.; Apfel, U.-P.; Schuhmann, W., Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Organic Chemistry 2018, 14 (1), 1436-1445.
    42. Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S. v.; Coutanceau, C.; Atanassov, P. B., Self-supported Pd x Bi catalysts for the electrooxidation of glycerol in alkaline media. Journal of American Chemical Society 2014, 136 (10), 3937-3945.
    43. Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J., Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis 2017, 356, 14-21.
    44. Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. B., Glycerol electrooxidation on self-supported Pd1Snx nanoparticules. Applied Catalysis B: Environmental 2015, 176, 429-435.
    45. Huang, Y.; Yang, R.; Anandhababu, G.; Xie, J.; Lv, J.; Zhao, X.; Wang, X.; Wu, M.; Li, Q.; Wang, Y., Cobalt/iron (oxides) heterostructures for efficient oxygen evolution and benzyl alcohol oxidation reactions. ACS Energy Letters 2018, 3 (8), 1854-1860.
    46. Zhao, Y.; Xing, S.; Meng, X.; Zeng, J.; Yin, S.; Li, X.; Chen, Y., Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale 2019, 11 (19), 9319-9326.
    47. Reid, L. M.; Li, T.; Cao, Y.; Berlinguette, C. P., Organic chemistry at anodes and photoanodes. Sustainable Energy Fuels 2018, 2 (9), 1905-1927.
    48. Katryniok, B.; Kimura, H.; Skrzyńska, E.; Girardon, J.-S.; Fongarland, P.; Capron, M.; Ducoulombier, R.; Mimura, N.; Paul, S.; Dumeignil, F., Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry 2011, 13 (8), 1960-1979.
    49. Dai, L.; Qin, Q.; Zhao, X.; Xu, C.; Hu, C.; Mo, S.; Wang, Y. O.; Lin, S.; Tang, Z.; Zheng, N., Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Central Science 2016, 2 (8), 538-544.
    50. Chen, Y.; Lavacchi, A.; Miller, H.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F., Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nature Communications 2014, 5 (1), 1-6.
    51. Liu, G.; Zhang, X.; Zhao, C.; Xiong, Q.; Gong, W.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H., Electrocatalytic oxidation of benzyl alcohol for simultaneously promoting H2 evolution by a Co0. 83Ni0. 17/activated carbon electrocatalyst. New Journal of Chemistry 2018, 42 (8), 6381-6388.
    52. Zheng, J.; Chen, X.; Zhong, X.; Li, S.; Liu, T.; Zhuang, G.; Li, X.; Deng, S.; Mei, D.; Wang, J. G., Hierarchical porous NC@ CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials 2017, 27 (46), 1704169.
    53. You, B.; Liu, X.; Liu, X.; Sun, Y., Efficient H2 evolution coupled with oxidative refining of alcohols via a hierarchically porous nickel bifunctional electrocatalyst. ACS Catalysis 2017, 7 (7), 4564-4570.
    54. Chen, G.-F.; Luo, Y.; Ding, L.-X.; Wang, H., Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catalysis 2018, 8 (1), 526-530.
    55. Wei, X.; Wang, S.; Hua, Z.; Chen, L.; Shi, J.; interfaces, Metal–organic framework nanosheet electrocatalysts for efficient H2 production from methanol solution: methanol-assisted water splitting or methanol reforming? ACS Applied Materials 2018, 10 (30), 25422-25428.
    56. Dold, S.; Zimmermann, M. B.; Jukic, T.; Kusic, Z.; Jia, Q.; Sang, Z.; Quirino, A.; San Luis, T. O.; Fingerhut, R.; Kupka, R., Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: a cross-sectional multicenter study. Journal of Nutrition 2018, 148 (4), 587-598.
    57. Li, B.; Dong, X.; Wang, H.; Ma, D.; Tan, K.; Jensen, S.; Deibert, B. J.; Butler, J.; Cure, J.; Shi, Z., Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications 2017, 8 (1), 1-9.
    58. Chapman, K. W.; Chupas, P. J.; Nenoff, T. M., Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. Journal of American Chemical Society 2010, 132 (26), 8897-8899.
    59. Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M., Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. Journal of American Chemical Society 2011, 133 (32), 12398-12401.
    60. Pham, T. C. T.; Docao, S.; Hwang, I. C.; Song, M. K.; Moon, D.; Oleynikov, P.; Yoon, K. B., Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environmental Science 2016, 9 (3), 1050-1062.
    61. Allen, J. B.; Larry, R. F., Electrochemical methods fundamentals and applications. John Wiley & Sons: 2001,1-851.
    62. Arroyave, G.; Pineda, O.; Scrimshaw, N. S., The stability of potassium iodate in crude table salt. Bulletin of the World Health Organization 1956, 14 (1), 183.
    63. De Santana, H.; Temperini, M., Spectroelectrochemical study of iodide, iodate and periodate on a silver electrode in alkaline aqueous solution. Journal of Electroanalytical Chemistry, interfacial electrochemistry 1991, 316 (1-2), 93-105.
    64. Hu, E.; Yao, Y.; Chen, Y.; Cui, Y.; Wang, Z.; Qian, G., Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co (OH) 2 nanosheet arrays. Nanoscale Advances 2021, 3 (2), 604-610.
    65. Eftekhari, A., Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy 2017, 42 (16), 11053-11077.
    66. Over, H., Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chemical Reviews 2012, 112 (6), 3356-3426.
    67. Mahmood, J.; Li, F.; Jung, S.-M.; Okyay, M. S.; Ahmad, I.; Kim, S.-J.; Park, N.; Jeong, H. Y.; Baek, J.-B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology 2017, 12 (5), 441-446.
    68. Wang, J.; Wei, Z.; Mao, S.; Li, H.; Wang, Y., Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environmental Science 2018, 11 (4), 800-806.
    69. Xu, J.; Liu, T.; Li, J.; Li, B.; Liu, Y.; Zhang, B.; Xiong, D.; Amorim, I.; Li, W.; Liu, L., Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environmental Science 2018, 11 (7), 1819-1827.
    70. Wang, Z. L.; Sun, K.; Henzie, J.; Hao, X.; Li, C.; Takei, T.; Kang, Y. M.; Yamauchi, Y., Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angewandte Chemie International Edition 2018, 57 (20), 5848-5852.
    71. Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nature Communications 2017, 8 (1), 1-12.
    72. Menzel, N.; Ortel, E.; Mette, K.; Kraehnert, R.; Strasser, P., Dimensionally stable Ru/Ir/TiO2-anodes with tailored mesoporosity for efficient electrochemical chlorine evolution. ACS Catalysis 2013, 3 (6), 1324-1333.
    73. Panić, V.; Dekanski, A.; Milonjić, S. K.; Atanasoski, R.; Nikolić, B. Ž., RuO2–TiO2 coated titanium anodes obtained by the sol–gel procedure and their electrochemical behaviour in the chlorine evolution reaction. Colloids Surfaces A: Physicochemical Engineering Aspects 1999, 157 (1-3), 269-274.
    74. Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S., A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energy Environmental Science 2014, 7 (7), 2376-2382.
    75. Kusmierek, E., Electrochemical and Corrosion Characterization of TiO 2-RuO 2/Ti Electrodes Modified with WO 3. Electrocatalysis 2019, 10 (5), 499-515.
    76. Janssen, L.; Starmans, L.; Visser, J.; Barendrecht, E., Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode. Electrochimica Acta 1977, 22 (10), 1093-1100.
    77. Yoo, H.; Oh, K.; Lee, G.; Choi, J., RuO2-doped anodic TiO2 nanotubes for water oxidation: single-step anodization vs potential shock method. Journal of Electrochemical Society 2017, 164 (2), H104.
    78. Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Natature Communications 2019, 10 (1), 1-13.
    79. Miao, X.; Zhang, L.; Wu, L.; Hu, Z.; Shi, L.; Zhou, S., Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Natature Communications 2019, 10 (1), 1-7.
    80. Retuerto, M.; Pascual, L.; Calle-Vallejo, F.; Ferrer, P.; Gianolio, D.; Pereira, A. G.; García, Á.; Torrero, J.; Fernández-Díaz, M. T.; Bencok, P., Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Natature Communications 2019, 10 (1), 1-9.
    81. Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W.; Koper, M. T., Iridium-based double perovskites for efficient water oxidation in acid media. Natature Communications 2016, 7 (1), 1-6.
    82. Lebedev, D.; Povia, M.; Waltar, K.; Abdala, P. M.; Castelli, I. E.; Fabbri, E.; Blanco, M. V.; Fedorov, A.; Copéret, C.; Marzari, N., Highly active and stable iridium pyrochlores for oxygen evolution reaction. Chemistry of Materials 2017, 29 (12), 5182-5191.
    83. Shih, P.-C.; Kim, J.; Sun, C.-J.; Yang, H., Single-phase pyrochlore Y2Ir2O7 electrocatalyst on the activity of oxygen evolution reaction. ACS Applied Energy Materials 2018, 1 (8), 3992-3998.
    84. Kim, J.; Shih, P.-C.; Tsao, K.-C.; Pan, Y.-T.; Yin, X.; Sun, C.-J.; Yang, H., High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. Journal of American Chemical Society 2017, 139 (34), 12076-12083.
    85. Hao, S.; Liu, M.; Pan, J.; Liu, X.; Tan, X.; Xu, N.; He, Y.; Lei, L.; Zhang, X., Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Natature Communications 2020, 11 (1), 1-11.
    86. Su, J.; Ge, R.; Jiang, K.; Dong, Y.; Hao, F.; Tian, Z.; Chen, G.; Chen, L., Assembling Ultrasmall Copper‐Doped Ruthenium Oxide Nanocrystals into Hollow Porous Polyhedra: Highly Robust Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials 2018, 30 (29), 1801351.
    87. Wang, C.; Qi, L., Heterostructured Inter‐Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angewandte Chemie International Edition 2020, 59 (39), 17219-17224.
    88. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; Van Der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature chemistry 2013, 5 (4), 300-306.
    89. Zhang, Q.; Kusada, K.; Wu, D.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Honma, T., Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chemical Science 2019, 10 (19), 5133-5137.
    90. Kusada, K.; Kobayashi, H.; Ikeda, R.; Kubota, Y.; Takata, M.; Toh, S.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K., Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. Journal of American Chemical Society 2014, 136 (5), 1864-1871.
    91. Mori, K.; Miyawaki, K.; Yamashita, H., Ru and Ru–Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia–borane. ACS Catalysis 2016, 6 (5), 3128-3135.
    92. Huang, B.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H., Solid-solution alloying of immiscible Ru and Cu with enhanced CO oxidation activity. Journal of American Chemical Society 2017, 139 (13), 4643-4646.
    93. Okazoe, S.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H., Synthesis of Mo and Ru solid-solution alloy NPs and their hydrogen evolution reaction activity. Chemical Communications 2020, 56 (92), 14475-14478.
    94. Zhang, Q.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H., Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nature Communications 2018, 9 (1), 1-9.
    95. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research 2013, 46 (8), 1740-1748.
    96. Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z., Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nature Catalysis 2020, 3 (5), 454-462.
    97. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. PNAS 2006, 103 (43), 15729-15735.
    98. Gray, H. B., Powering the planet with solar fuel. Natature Chemistry 2009, 1 (1), 7-7.
    99. Risch, M.; Ringleb, F.; Kohlhoff, M.; Bogdanoff, P.; Chernev, P.; Zaharieva, I.; Dau, H., Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environmental Science 2015, 8 (2), 661-674.
    100. Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J.-L., A coupling for success: controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247-254.
    101. Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W., Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@ 2D-MXene Schottky junction nanohybrid. Chemical Engineering Journal 2020, 404, 126328.
    102. Guo, Y.; Zhou, X.; Tang, J.; Tanaka, S.; Kaneti, Y. V.; Na, J.; Jiang, B.; Yamauchi, Y.; Bando, Y.; Sugahara, Y., Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy 2020, 75, 104913.
    103. Chala, S. A.; Tsai, M.-C.; Su, W.-N.; Ibrahim, K. B.; Thirumalraj, B.; Chan, T.-S.; Lee, J.-F.; Dai, H.; Hwang, B.-J., Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst. ACS nano 2020, 14 (2), 1770-1782.
    104. Shi, J.; Qiu, F.; Yuan, W.; Guo, M.; Lu, Z.-H., Nitrogen-doped carbon-decorated yolk-shell CoP@ FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chemical Engineering Journal 2020, 403, 126312.
    105. Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y., Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst–CuO. Applied Catalysis B: Environmental 2020, 265, 118543.
    106. Liu, Y.; Hu, B.; Wu, S.; Wang, M.; Zhang, Z.; Cui, B.; He, L.; Du, M., Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Applied Catalysis B: Environmental 2019, 258, 117970.
    107. Bloor, L. G.; Solarska, R.; Bienkowski, K.; Kulesza, P. J.; Augustynski, J.; Symes, M. D.; Cronin, L., Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer. Journal of American Chemical Society 2016, 138 (21), 6707-6710.
    108. Rausch, B.; Symes, M. D.; Cronin, L., A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. Journal of American Chemical Society 2013, 135 (37), 13656-13659.
    109. Guan, C.; Wu, H.; Ren, W.; Yang, C.; Liu, X.; Ouyang, X.; Song, Z.; Zhang, Y.; Pennycook, S. J.; Cheng, C., Metal–organic framework-derived integrated nanoarrays for overall water splitting. Journal of Matterials Chemistry A 2018, 6 (19), 9009-9018.
    110. Symes, M. D.; Cronin, L., Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Natature Chemistry 2013, 5 (5), 403.
    111. Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M., Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Natature Communications 2019, 10 (1), 1-12.
    112. Swesi, A. T.; Masud, J.; Nath, M., Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environmental Science 2016, 9 (5), 1771-1782.
    113. Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G., Energy efficient electrochemical reduction of CO 2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environmental Science 2019, 12 (2), 747-755.
    114. Chala, S. A.; Tsai, M.-C.; Su, W.-N.; Ibrahim, K. B.; Duma, A. D.; Yeh, M.-H.; Wen, C.-Y.; Yu, C.-H.; Chan, T.-S.; Dai, H., B.-J.Hwang Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions. ACS Catalysis 2018, 9 (1), 117-129.
    115. Fu, J.; Yang, K.; Ma, C.; Zhang, N.; Gai, H.; Zheng, J.; Chen, B. H., Bimetallic Ru–Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen. Applied Catalysis 2016, 184, 216-222.
    116. Yang, Y.; Dang, L.; Shearer, M. J.; Sheng, H.; Li, W.; Chen, J.; Xiao, P.; Zhang, Y.; Hamers, R. J.; Jin, S., Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials 2018, 8 (15), 1703189.
    117. Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Natature Communications 2016, 7 (1), 1-9.
    118. Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D., In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Natature Communications 2020, 11 (1), 1-10.
    119. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3 d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Natature Materials 2012, 11 (6), 550-557.
    120. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews 2017, 46 (2), 337-365.
    121. Liu, G.; Wang, M.; Wu, Y.; Li, N.; Zhao, F.; Zhao, Q.; Li, J., 3D porous network heterostructure NiCe@ NiFe electrocatalyst for efficient oxygen evolution reaction at large current densities. Applied Catalysis B: Environmental 2020, 260, 118199.
    122. Zhang, X.; Si, C.; Guo, X.; Kong, R.; Qu, F., A MnCo 2 S 4 nanowire array as an earth-abundant electrocatalyst for an efficient oxygen evolution reaction under alkaline conditions. Journal of Materials Chemistry A 2017, 5 (33), 17211-17215.
    123. Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N., Metal Boride‐Based Catalysts for Electrochemical Water‐Splitting: Advanced Functional Materials 2020, 30 (1), 1906481.
    124. Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; De La Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W., Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Advanced Energy Materials 2017, 7 (17), 1700381.
    125. Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z.; Somsen, C.; Muhler, M.; Schuhmann, W., Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Advanced Energy Materials 2016, 6 (6), 1502313.
    126. Xu, N.; Cao, G.; Chen, Z.; Kang, Q.; Dai, H.; Wang, P., Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A 2017, 5 (24), 12379-12384.
    127. Masa, J.; Andronescu, C.; Antoni, H.; Sinev, I.; Seisel, S.; Elumeeva, K.; Barwe, S.; Marti‐Sanchez, S.; Arbiol, J.; Roldan Cuenya, B., Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem. 2019, 6 (1), 235-240.
    128. Yao, M.; Wang, N.; Hu, W.; Komarneni, S., Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0. 8Fe0. 2 nanosheets for high performance oxygen evolution reaction. Applied Catalysis B: Environmental 2018, 233, 226-233.
    129. Ahrens, L. H., The use of ionization potentials Part 1. Ionic radii of the elements. Geochimica .cosmochimica. Acta 1952, 2 (3), 155-169.
    130. Ibrahim, K. B.; Su, W.-N.; Tsai, M.-C.; Chala, S. A.; Kahsay, A. W.; Yeh, M.-H.; Chen, H.-M.; Duma, A. D.; Dai, H.; Hwang, B.-J., Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy 2018, 47, 309-315.
    131. Shao, M.; Liu, J.; Ding, W.; Wang, J.; Dong, F.; Zhang, J., Oxygen vacancy engineering of self-doped SnO 2− x nanocrystals for ultrasensitive NO 2 detection. Journal of Matterials Chemistry C 2020, 8 (2), 487-494.
    132. Li, Y.; Wang, Y.; Lu, J.; Yang, B.; San, X.; Wu, Z.-S., 2D intrinsically defective RuO2/Graphene heterostructures as All-pH efficient oxygen evolving electrocatalysts with unprecedented activity. Nano Energy 2020, 78, 105185.
    133. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 2018, 95 (2), 197-206.
    134. Bard, A. J.; Faulkner, L. R., Fundamentals and applications. Electrochemical Methods 2001, 2 (482), 580-632.
    135. Tiwari, J. N.; Dang, N. K.; Park, H. J.; Sultan, S.; Kim, M. G.; Haiyan, J.; Lee, Z.; Kim, K. S., Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles. Nano Energy 2020, 78, 105166.
    136. Shieh, D. T.; Hwang, B. J., Morphology and electrochemical activity of Ru-Ti-Sn ternary-oxide electrodes in 1 M NaCl solution. Electrochimica acta 1993, 38 (15), 2239-2246.
    137. Ejigu, A.; Lovelock, K. R.; Licence, P.; Walsh, D. A., Iodide/triiodide electrochemistry in ionic liquids: Effect of viscosity on mass transport, voltammetry and scanning electrochemical microscopy. Electrochimica Acta 2011, 56 (28), 10313-10320.
    138. Hendel, S. J.; Young, E. R., Introduction to electrochemistry and the use of electrochemistry to synthesize and evaluate catalysts for water oxidation and reduction. Journal of Chemical Education 2016, 93 (11), 1951-1956.
    139. Espinoza, E. M.; Clark, J. A.; Soliman, J.; Derr, J. B.; Morales, M.; Vullev, V., Practical aspects of cyclic voltammetry: How to estimate reduction potentials when irreversibility prevails. Journal of Electrochemical Society 2019, 166 (5), H3175.
    140. Lhermitte, C. R.; Sivula, K., Alternative oxidation reactions for solar-driven fuel production. ACS Catal. 2019, 9 (3), 2007-2017.
    141. Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X., Accelerated hydrogen evolution kinetics on NiFe‐layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Advanced Materials 2018, 30 (10), 1706279.
    142. Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X., Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting. Advanced Materials 2016, 28 (2), 215-230.
    143. McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of American Chemical Society 2013, 135 (45), 16977-16987.
    144. Li, Y.; Zhang, L.; Xiang, X.; Yan, D.; Li, F., Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. Journal of Matterials Chemistry A 2014, 2 (33), 13250-13258.
    145. Audichon, T.; Napporn, T. W.; Canaff, C.; Morais, C. u.; Comminges, C. m.; Kokoh, K. B., IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. Journal of Physical Chemistry C 2016, 120 (5), 2562-2573.
    146. Kim, Y.-T.; Lopes, P. P.; Park, S.-A.; Lee, A.-Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V., Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Natature Communications 2017, 8 (1), 1-8.
    147. Gao, J.; Xu, C.-Q.; Hung, S.-F.; Liu, W.; Cai, W.; Zeng, Z.; Jia, C.; Chen, H. M.; Xiao, H.; Li, J., Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. Journal of American Chemical Society 2019, 141 (7), 3014-3023.
    148. Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X., Trinary layered double hydroxides as high‐performance bifunctional materials for oxygen electrocatalysis. Advanced Energy Matterials 2015, 5 (13), 1500245.
    149. Kim, J.; Shih, P.-C.; Tsao, K.-C.; Pan, Y.-T.; Yin, X.; Sun, C.-J.; Yang, H., High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. Journal of American Chemical Society 2017, 139 (34), 12076-12083.
    150. Wang, Y.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J.; Wei, W.; Yang, Z.; Sun, X.; Cai, W. B.; Zheng, G., Bio‐Inspired Leaf‐Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst. Advanced Science 2015, 2 (4), 1500003.
    151. Wang, G.; Chen, J.; Li, Y.; Jia, J.; Cai, P.; Wen, Z., Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell. Chemical Communications 2018, 54 (21), 2603-2606.
    152. Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environmental Science 2018, 11 (7), 1890-1897.
    153. Liu, W.-J.; Xu, Z.; Zhao, D.; Pan, X.-Q.; Li, H.-C.; Hu, X.; Fan, Z.-Y.; Wang, W.-K.; Zhao, G.-H.; Jin, S., Efficient electrochemical production of glucaric acid and H 2 via glucose electrolysis. Natature Communications 2020, 11 (1), 265.
    154. Li, Z.; He, T.; Matsumura, D.; Miao, S.; Wu, A.; Liu, L.; Wu, G.; Chen, P., Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia–borane. ACS Catalysis 2017, 7 (10), 6762-6769.
    155. Yusubov, M. S.; Zhdankin, V. V., Iodine catalysis: A green alternative to transition metals in organic chemistry and technology. Resource-Efficient Technologies 2015, 1 (1), 49-67.
    156. Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D., Using Surface Segregation To Design Stable Ru‐Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments. Angewandte Chemie 2014, 126 (51), 14240-14245.
    157. Miao, X.; Zhang, L.; Wu, L.; Hu, Z.; Shi, L.; Zhou, S., Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nature Communications 2019, 10 (1), 1-7.
    158. Retuerto, M.; Pascual, L.; Calle-Vallejo, F.; Ferrer, P.; Gianolio, D.; Pereira, A. G.; García, Á.; Torrero, J.; Fernández-Díaz, M. T.; Bencok, P., Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nature Communications 2019, 10 (1), 1-9.
    159. Chen, Y.; Lavacchi, A.; Miller, H.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F., Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Natuture Communications 2014, 5 (1), 1-6.
    160. Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J., Prospective materials and applications for Li secondary batteries. Energy Environmental Science 2011, 4 (6), 1986-2002.
    161. Huang, S.-Y.; Ganesan, P.; Popov, B. N., Electrocatalytic activity and stability of titania-supported platinum–palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catalysis 2012, 2 (5), 825-831.
    162. Chi, B.; Victorio, E. S.; Jin, T., Synthesis of TiO2-based nanotube on Ti substrate by hydrothermal treatment. Journal of Nanoscience and Nanotechnology 2007, 7 (2), 668-672.
    163. Chen, Y.; Gombac, V.; Montini, T.; Lavacchi, A.; Filippi, J.; Miller, H.; Fornasiero, P.; Vizza, F., An increase in hydrogen production from light and ethanol using a dual scale porosity photocatalyst. Green Chemistry 2018, 20 (10), 2299-2307.
    164. Shen, L.; Uchaker, E.; Zhang, X.; Cao, G., Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Advanced Materials 2012, 24 (48), 6502-6506.
    165. Wang, X.; Liu, B.; Hou, X.; Wang, Q.; Li, W.; Chen, D.; Shen, G. J. N. R., Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research 2014, 7 (7), 1073-1082.
    166. Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J., Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. Journal of American Chemical Society 2011, 133 (30), 11716-11724.
    167. Pawlak, D. A.; Ito, M.; Oku, M.; Shimamura, K.; Fukuda, T., Interpretation of XPS O (1s) in mixed oxides proved on mixed perovskite crystals. Journal of Physical Chemistry B 2002, 106 (2), 504-507.
    168. Morgan, D. J., Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis 2015, 47 (11), 1072-1079.
    169. Pan, C.-J.; Tsai, M.-C.; Su, W.-N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S.-Y.; Hwang, B.-J., Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. Journal of the Taiwan Institute of Chemical Engineers 2017, 74, 154-186.
    170. DeBeer George, S.; Brant, P.; Solomon, E., Metal and ligand K-Edge XAS of organotitanium complexes: Metal 4p and 3d contributions to pre-edge intensity and their contributions to bonding. Journal of American Chemical Society 2005, 127 (2), 667-674.
    171. Raval, P. Y.; Joshi, N. P.; Pansara, P. R.; Vasoya, N. H.; Kumar, S.; Dolia, S. N.; Modi, K. B.; Singhal, R. K., A Ti L3, 2-and K-edge XANES and EXAFS study on Fe3+-substituted CaCu3Ti4O12. Ceramics International 2018, 44 (17), 20716-20722.
    172. Bilovol, V.; Ferrari, S.; Derewnicka, D.; Saccone, F. D., XANES and XPS study of electronic structure of Ti-enriched Nd–Fe–B ribbons. Materials Chemistry Physics 2014, 146 (3), 269-276.
    173. Lukatskaya, M. R.; Bak, S. M.; Yu, X.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. J. A. E. M., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X‐ray absorption spectroscopy. Advanced Energy Materials 2015, 5 (15), 1500589.
    174. Caretti, I.; Yuste, M.; Torres, R.; Sánchez, O.; Jiménez, I.; Galindo, R. E., Coordination chemistry of titanium and zinc in Ti (1− x) Zn 2x O 2 (0≤ x≤ 1) ultrathin films grown by DC reactive magnetron sputtering. RSC Advances 2012, 2 (7), 2696-2699.
    175. Sarma, L. S.; Chen, C.-H.; Kumar, S. M. S.; Wang, G.-R.; Yen, S.-C.; Liu, D.-G.; Sheu, H.-S.; Yu, K.-L.; Tang, M.-T.; Lee, J.-F., Hwang,B-J Formation of Pt− Ru nanoparticles in ethylene glycol solution: an in situ X-ray absorption spectroscopy study. Langmuir 2007, 23 (10), 5802-5809.
    176. Ho, V. T.; Pillai, K. C.; Chou, H.; Pan, C.; Rick, J.; Su, W.; Lee, J.; Sheu, H.; Chuang, W., Hwang, B-J, Robust non-carbon Ti0. 7Ru0. 3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy Environmental Science 2011, 4, 4194-4200.
    177. Frenkel, A., Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chemical Society Reviews 2012, 41 (24), 8163-8178.
    178. Rockenberger, J.; Tröger, L.; Kornowski, A.; Vossmeyer, T.; Eychmüller, A.; Feldhaus, J.; Weller, H., EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles. Journal of Physical Chemistry B 1997, 101 (14), 2691-2701.
    179. Marcus, M. A.; Andrews, M. P.; Zegenhagen, J.; Bommannavar, A. S.; Montano, P., Structure and vibrations of chemically produced Au 55 clusters. Physical Review B 1990, 42 (6), 3312.
    180. McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of American Chemical Society 2013, 135 (45), 16977-16987.
    181. D. B. Adam, M.-C. T., Y. A. Awoke, W-H. Huang, Y-W. Yang,; C.-W. Pao, W.-N. Su., B. -J Hwang, Iodide Oxidation Reaction Catalyzed by Ruthenium–Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously. ACS Sustainable Chemistry and Engineering 2021, (9) 8803-8812.
    182. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-1596.
    183. Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343 (6177), 1339-1343.
    184. Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H., Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews 2015, 115 (9), 3433-3467.
    185. Greeley, J.; Stephens, I.; Bondarenko, A.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Natature Chemistry 2009, 1 (7), 552-556.
    186. Bai, X.; Zhao, E.; Li, K.; Wang, Y.; Jiao, M.; He, F.; Sun, X.; Sun, H.; Wu, Z., Theoretical investigation on the reaction pathways for oxygen reduction reaction on silicon doped graphene as potential metal-free catalyst. Journal of Electrochemical Society 2016, 163 (14), F1496.
    187. Holewinski, A.; Idrobo, J.-C.; Linic, S., High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Natature Chemistry 2014, 6 (9), 828-834.
    188. Han, Z.-K.; Sarker, D.; Ouyang, R.; Mazheika, A.; Gao, Y.; Levchenko, S. V., Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Natature Communications 2021, 12 (1), 1-9.
    189. Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Natature Communications 2017, 8 (1), 1-12.
    190. Greiner, M. T.; Jones, T.; Beeg, S.; Zwiener, L.; Scherzer, M.; Girgsdies, F.; Piccinin, S.; Armbrüster, M.; Knop-Gericke, A.; Schlögl, R., Free-atom-like d states in single-atom alloy catalysts. Natature Chemistry 2018, 10 (10), 1008-1015.
    191. Tierney, H. L.; Baber, A. E.; Sykes, E. C. H., Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys. Journal of Physical Chemistry C 2009, 113 (17), 7246-7250.
    192. Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M., Single atom alloy surface analogs in Pd 0.18 Cu 15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics 2013, 15 (29), 12187-12196.
    193. Pei, G. X.; Liu, X. Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T., Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catalysis 2017, 7 (2), 1491-1500.
    194. Sun, G.; Zhao, Z.-J.; Mu, R.; Zha, S.; Li, L.; Chen, S.; Zang, K.; Luo, J.; Li, Z.; Purdy, S. C., Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Natature Communications 2018, 9 (1), 1-9.
    195. Lucci, F. R.; Liu, J.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Selective hydrogenation of 1, 3-butadiene on platinum–copper alloys at the single-atom limit. Natature Communications 2015, 6 (1), 1-8.
    196. Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M., Tackling CO poisoning with single-atom alloy catalysts. Journal of American Chemical Sococity 2016, 138 (20), 6396-6399.
    197. Marcinkowski, M. D.; Liu, J.; Murphy, C. J.; Liriano, M. L.; Wasio, N. A.; Lucci, F. R.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catalysis 2017, 7 (1), 413-420.
    198. Simonovis, J. P.; Hunt, A.; Palomino, R. M.; Senanayake, S. D.; Waluyo, I., Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu (111) surface in an ambient pressure of CO. Journal of Physical Chemistry C 2018, 122 (8), 4488-4495.
    199. Marcinkowski, M. D.; Darby, M. T.; Liu, J.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H., Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Natature Chemistry 2018, 10 (3), 325.
    200. Pei, G. X.; Liu, X. Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T., Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catalysis 2017, 7 (2), 1491-1500.
    201. Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z., Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis 2015, 5 (6), 3717-3725.
    202. Zhang, L.; Wang, A.; Miller, J. T.; Liu, X.; Yang, X.; Wang, W.; Li, L.; Huang, Y.; Mou, C.-Y.; Zhang, T., Efficient and durable Au alloyed Pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catalysis 2014, 4 (5), 1546-1553.
    203. Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N., Catalytically highly active top gold atom on palladium nanocluster. Natature Materials 2012, 11 (1), 49-52.
    204. Duchesne, P. N.; Li, Z.; Deming, C. P.; Fung, V.; Zhao, X.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S., Golden single-atomic-site platinum electrocatalysts. Natature Materials 2018, 17 (11), 1033-1039.
    205. Li, Z.; He, T.; Matsumura, D.; Miao, S.; Wu, A.; Liu, L.; Wu, G.; Chen, P., Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia–borane. ACS Catalysis 2017, 7 (10), 6762-6769.
    206. Wang, Z.-T.; Darby, M. T.; Therrien, A. J.; El-Soda, M.; Michaelides, A.; Stamatakis, M.; Sykes, E. C. H., Preparation, structure, and surface chemistry of Ni–Au single atom alloys. Journal of Physical Chemistry C 2016, 120 (25), 13574-13580.
    207. Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W., Ruthenium‐Based Single‐Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. Advanced Energy Materials 2019, 9 (20), 1803913.
    208. Yang, Y.; Lun, Z.; Xia, G.; Zheng, F.; He, M.; Chen, Q., Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy Environmental Science 2015, 8 (12), 3563-3571.
    209. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J., Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters 2004, 93 (15), 156801.
    210. Kong, X.; Xu, K.; Zhang, C.; Dai, J.; Norooz Oliaee, S.; Li, L.; Zeng, X.; Wu, C.; Peng, Z., Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catalysis 2016, 6 (3), 1487-1492.
    211. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chemical Society Reviews 2015, 44 (8), 2060-2086.

    無法下載圖示 全文公開日期 2024/08/10 (校內網路)
    全文公開日期 2031/08/10 (校外網路)
    全文公開日期 2026/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE