簡易檢索 / 詳目顯示

研究生: 周祖詮
Tsu-chuan Chou
論文名稱: 機車引擎動力系統容差分析
Tolerance Analysis of the Power System for Motorcycle Engine
指導教授: 鄧昭瑞
Geo-ry Tang
口試委員: 修芳仲
Fang-jung Shiou
郭進星
Chin-hsing Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 引擎動力系統壓縮比容差分析容差分配
外文關鍵詞: engine, power system, compression ratio, tolerance analysis, tolerance allocation
相關次數: 點閱:203下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討機車引擎動力系統關鍵尺度及壓縮比可能的變異。研究中推導活塞在上、下死點與周邊間隙尺度鏈及壓縮比的數學關係式。因壓縮比是非線性問題,本研究以近似的線性尺度鏈作為容差估算之依據。研究中利用Excel工具建立最差法及統計法容差分析資料表,以探討各獨立尺度對導出尺度的影響。研究結果發現,適度地調整動力系統零件之公稱值,可確保動力系統上、下死點間隙在安全範圍內。此外,微幅放寬部份尺度的容差也可降低製造不良率及成本,並確保壓縮比容差在規格內。


This thesis examines the variations of critical dimensions and compression ratio of a motorcycle engine. The dimension chains for compression ratio, the clearances as the piston on the top dead center and bottom dead center are derived. Because the compression ratio involves in a nonlinear function of independent dimensions, a linearized dimension chain is used to estimate the tolerance of the derived variable. Excel tables are employed to record the data for tolerance analysis based on the worst case method and statistical method. his work investigates the influences of the tolerance of independent dimensions on the variation of the derived dimensions. The results of this study suggests that the nominal value of some particular dimensions may be modified. In addition, slightly increasing the tolerance of the components of power system can reduce the manufacturing cost but the assembly still meets the functional requirement.

摘要.................................................................................................................Ⅰ Abstract...........................................................................................................Ⅱ 誌 謝...............................................................................................................Ⅲ 目 錄.............................................................................................................. Ⅳ 圖索引.............................................................................................................Ⅵ 表索引.............................................................................................................Ⅷ 符號說明.........................................................................................................Ⅸ 第一章 緒論.....................................................................................................1 1.1 研究方法.............................................................................................2 1.2 文獻探討.............................................................................................3 1.3 本文架構.............................................................................................5 第二章 四行程機車引擎作動原理.................................................................6 2.1 汽油引擎動力系統構造介紹...........................................................6 2.2 四行程引擎的動作...........................................................................9 2.3 壓縮比對燃燒效率的影響.............................................................11 第三章 容差分析.........................................................................................12 3.1 容差概論...........................................................................................12 3.2 常態分佈.................................…......................................................14 3.3 製程能力分析...................................................................................15 3.4 尺度鏈...............................................................................................17 3.5 容差分析的方法...............................................................................19 3.6 關鍵尺度之容差分析.......................................................................20 3.6.1 上死點間隙...........................................................................21 3.6.2 下死點間隙...........................................................................27 3.6.3 壓縮比........................................….......................................31 第四章 設計變更.........................................................................................41 4.1 上死點間隙.......................................................................................41 4.2 下死點間隙.......................................................................................43 4.3 壓縮比...............................................................................................45 第五章 結論與未來展望.............................................................................50 參考文獻.........................................................................................................52 附錄A 汽缸墊片厚度量測............................................................................54 附錄B 汽缸頭燃燒室及活塞容積量測........................................................58 附錄C 壓縮比靈敏度推導............................................................................62 作者簡介.........................................................................................................62 授 權 書.........................................................................................................63

[1] J. Crofts, “Assembly Tolerance Problem, ” The Engineer, pp. 913-917 (1958).
[2] D. Evans, “Statistical Tolerancing: The State of the Art Part Ⅱ. Methods for Estimating Moments, ” Journal of Quality Technology, Vol. 7, No. 1, pp. 1-12 (1975).
[3] W. Chase, “Design Issues in Mechanical Tolerance Analysis, ” Manufacturing Review, ASME, Vol. 1, No. 1, pp. 50-59 (1988).
[4] O. Bjorke, Computer-aided Tolerancing, 2nd edition , ASME (1989).
[5] 徐東、鮑勁松、金燁,「複雜發動機關鍵機構的公差分析與優化」,計算機集成製造系統,第十二卷,第五期,第 721-726頁 (2006)。
[6] J. Jezierski, M. Kowalik and Z. Siemiatkowski, “Assembly Operations and Tolerance Analysis of Combustion Engine Crank System, ” The Archives of Mechanical Engineering, Vol. 53, No. 4, pp. 363-371 (2006).
[7] K. Quinn, “The Newton Raphson Algorithm for Function Opti- mization, ” University of Washington, Seattle (2001).
[8] C. Creveling, “Tolerance Design a Handbook for Developing Optimal Specifications,” Addison-Wesley, N.Y. (1996).
[9] C. Feng and R. Balusu, “Robust Tolerance Design Considering Process Capability and Quality Loss, ” Conceptual and Innovative Design for Manufacturing, DE-Vol. 103, pp. 1-14, ASME (1999).
[10] B. Denniston, “Capability Indices and Conformance to Specification: The Motivation for Using Cpm, ” Quality Engineering, Vol. 18, No. 1, pp. 79-88, Taylor & Francis (2006).
[11] M. Movahhedy and S. Khodaygan, “Tolerance Analysis of Mechanical Assemblies with Asymmetric Tolerances,” SAE International , April 16-19 (2007).
[12] J. Heywood, “Internal Combustion Engine Fundamentals, ” 2nd edition, McGraw-Hill, N.Y. (1989).
[13] 李進修、王漢英,汽機車引擎設計與分析技術,全華科技圖書股份有限公司,台北(2005)。
[14] 歐陽渭城,內燃機工程學,全華科技圖書股份有限公司,台北(2001)。
[15] J. Folaron, “ The Evolution of Six Sigma, ” Six Sigma Forum Magazine, Vol. 2, No. 4, pp. 38-44, A.S.Q. (2003).
[16] Y. Hong and T. Chang, “A Comprehensive Review of Tolerancing Reserach, ” International Journal of Production Research, Vol. 40, No. 11, pp. 2425-2459 (2002).
[17] ASME Y14.5M, “Dimensioning and Tolerancing,” ASME, N.Y. (1994).
[18] D. Montgomery, “Introduction to Statistical Quality Control, ” 5th edition, John Wiley & Sons, N.Y. (2006).
[19] ICP., “Six Sigma,” http://icpartnership.com/sixsigma.html (2011)
[20] K. Chase, A. Parkinson, “A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies, ” ADCATS Report, No. 91-1 (1991).
[21] 林百福,汽車設計,全華科技圖書股份有限公司,台北 (1999)。
[22] 謝發清,「滾動軸承的故障與對策」,機械月刊,第十五卷,第八期,第 146-154頁 (1989)。

QR CODE