簡易檢索 / 詳目顯示

研究生: 黃培誠
Pei-Cheng Huang
論文名稱: 屋內型配電室火災防護之研究
Study of Dynamics of the Fire for Indoor Type Electrical Power Center
指導教授: 辜志承
Jyh-Cherng, Gu
口試委員: 蕭弘清
Hung-Ching, Hsiao
何子儀
Tze-Yee, Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 偵測配電室火災火災動力模擬器
外文關鍵詞: fds, electrical power center, fire, detector
相關次數: 點閱:591下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據統計,台閩地區近十年來平均每年火災發生次數達10,571次,造成230人死亡及695人受傷,並造成新台幣約32億元的直接財物損失,其中以「電氣設備」火災平均每年發生2,241件,持續佔當年度的第一位,比率約為全部火災發生原因與次數的23.9%[1]。
另為考量建築成本回收及電磁波、噪音等問題造成鄰近住戶的抗議,台電、工業廠房、商業及住宅建築物等紛將變配電室設置於屋內或地下層密閉空間,該電力設備場所具有穿越空間區劃管線眾多、空間容積小、採光通風困難、避難出入口位置與數量受限及災害發生時救援補給不易等建築特性,若不幸發生火災事故時,將因氧氣供應不足,造成不完全燃燒或悶燒,再加上電力設備火災多屬PVC、PE等塑膠類絕緣被覆材的燃燒,會產生大量的濃煙,濃煙隨著垂直管道與平面配管到處流竄,火害危險度將擴大。
本論文以屋內電力設備場所火災之行為做研究,首先研究電力設備的熱源、熱傳遞方式及燃燒特性與危害;再採用西元2004年NIST修正之FDS作模擬工具,求得電力設備在起火燃燒後該場所煙、熱與時間的相關數據;本論文提出(1)弧光偵測、PD監測、抽氣式煙霧檢測系統、線型感溫電纜、煙熱雙迴路偵測系統等事前的預防偵測和控制技術,(2)對於燃燒時穿越樓層或區劃之電纜線槽與配管排內外的煙、熱阻絕方案,以防止火勢及煙流蔓延,(3)歸納現行有關屋內電力設備場所防火安全相關法令規定未臻完善或有相互牴觸的地方,提出建議及可行修正方向,作為日後行政措施之考量及後續研究之參考。


The statistics showed that there were 10,571 fires averagely in Taiwan every year during the last decade and the fires have caused 230 deaths, 695 injuries, and a total of 3.2 billion NT of loss. Among all of the fires, the top cause of fire is by electric equipment which resulted to 2,241 fires. 23.9% out of all of the causes.
Taiwan Power Company, industry plants, business and residential buildings have built the electric power distribution room indoors or underground enclosed area under the consideration of cost of construction, electric wave and noise problems which have attracted protests from the neighboring residents. These electric power centers are usually very small, clustered with cables, poor lighting, poor air circulation, limited emergency exits, and that will cause difficulties for rescue. When a fire has happened, the supply of oxygen will be insufficient which will result to incomplete burning. With the help from the plastic PVC or PE insulation jacket of the electric equipments, excessive amount of smoke will be produced and will flow all over the building through the vertical and surface pipes which will expand the fire.
Indoor electric power center is being used as a tool for the study of behavior of fires. First of all, the heat source of the electric equipment, heat transfer method, and the characteristics and damage of burning will be studied. Following with the application of FDS published by NIST 2004, we can get the statistics regarding the smoke and heat when the electric equipment is on fire. With it, we suggest: (1)Arc detector, PD detector, VESDA, linear heat detector, heat and smoke detect system being applied to prevent and control the fire. (2) Ways to arrange the cable tray and piping in the throughout floors to block the smoke and heat in order to prevent the spreading of the fire. (3) Offer suggestions to the administration to fix the safety rules that are contradicting.

中文摘要............................Ⅰ Abstract............................Ⅱ 致謝................................Ⅲ 目錄................................Ⅳ 圖表索引............................Ⅶ 第一章 緒論..........................1 1.1研究動機與背景....................1 1.2研究成果..........................5 1.3各章節內容概述....................6 第二章 火災之形成與結果..............7 2.1燃燒熱的傳遞......................7 2.1.1熱之傳導........................7 2.1.2熱之對流........................9 2.1.3熱之輻射.......................10 2.2火災之歷程.......................11 2.3火災之生成物.....................12 2.3.1燃燒後之熱能...................13 2.3.2燃燒後之氣體...................14 2.3.3燃燒後產生之煙.................14 第三章 電力設備火災.................17 3.1前言.............................17 3.2電力設備與絕緣材料...............17 3.2.1電力場所設備的組成.............17 3.2.2絕緣材料的種類.................18 3.2.3絕緣材料之燃燒行為.............20 3.3電力設備的熱能...................22 3.3.1電阻熱.........................22 3.3.2放電現象發生之熱...............24 3.3.3感應熱.........................24 3.4電力設備火災發生之原因...........24 3.5配電箱之火災.....................26 3.5.1配電箱的火勢成長...............26 3.5.2配電箱燃燒之煙.................27 3.5.3配電箱的火勢衰減...............28 第四章 火災動力模擬器...............29 4.1火災動力模擬器的發展.............29 4.2火災動力模擬器的物理模式.........30 4.2.1流體動力學模式.................31 4.2.2燃燒模式.......................32 4.2.3幾何尺寸.......................32 4.2.4邊界條件.......................33 4.3 FDS的優點與限制.................34 第五章 電力設備場所火災模擬分析.....35 5.1電力設備場所火災模擬數據之建立...36 5.2模擬結果分析.....................42 5.2.1溫度分布情形...................42 5.2.2煙分布情形.....................50 5.3討論.............................53 第六章 電力設備場所防火安全.........56 6.1現況.............................56 6.2偵測與控制.......................57 6.2.1弧光偵測保護...................57 6.2.2部分放電偵測...................58 6.2.3抽氣式煙霧檢知系統.............60 6.2.4煙熱雙迴路偵測系統.............61 6.2.5線型感溫電纜偵測系統...........63 6.3煙熱阻絕技術.....................64 6.3.1防煙對策.......................65 6.3.2煙熱阻絕.......................65 6.4法規檢討修正方向.................67 6.5討論.............................69 第七章 結論與未來展望...............71 7.1結論.............................71 7.2未來展望.........................74 參考文獻............................75 附錄A...............................77 附錄B...............................79 附錄C...............................82 作者簡介............................84

[1]「消防白皮書」,內政部消防署,2004。
[2] 內政部網站http://www.moi.gov.tw/stat/, 2004。
[3] D. D. Drysdale, “Chemistry and Physics of Fire,” Fire Protection Handbook, National Fire Protection Association, Quincy, MA, pp.2-61~2-68, 2003.
[4] H. P. Morgan, “Smoke Control Methods in Enclosed Shopping Complexes of One or More Stories,” Borehamwood, Herts., U.K., Fire Research Station, 1979.
[5] NFPA 92B, Guide for Smoke Management Systems in Malls, Atria, and Large Areas, National Fire Protection Association, Quincy, MA, 2000.
[6] 陳弘毅,「火災學」,鼎茂圖書出版公司,1997。
[7] 宏泰電工股份有限公司產品型錄,2004。
[8] G. R. Colonna, “Plastics and Rubber,” Fire Protection Handbook, National Fire Protection Association, Quincy, MA, 2003.
[9] J. Mangs, J. Paananen, and O. Keski-Rahkonen, “Calorimetric Fire Experiments on Electronic Cabinets,” Fire Safety Journal 38, pp.165-186, 2003.
[10] ISO/TR 13387-2: Fire Safety Engineering-Part 2: Design Fire Scenarios and Design Fires, Geneva, Switzerland, International Organization for Standardization, pp.17, 1999.
[11] F. W. Mowrer, “Fundamentals of the Fire Hazards of Materials”, Handbook of Building Materials for Fire Protection, McGraw-Hill, pp.1.2~1.43, 2004.
[12] K. McGrattan, and Glenn Forney, Fire Dynamics Simulator (Version 4) User's Guide, NIST Special Publication 1018, 2004.
[13] K. McGrattan, Fire Dynamics Simulator (Version 4) Technical Reference Guide, NIST Special Publication 1018, 2004.
[14] A. Bounagui, A. Kashef, and N. Benichou, “Simulation of the Dynamics of the Fire for a Section of the L.H. La Fontaine Tunnel,” NRC-CNRC, pp.5-7, 2003.
[15] M. K. Dey, “Evaluation of Fire Models for Nuclear Power Plant Applications: Cable Tray Fires,” Division of Risk Analysis and Research U.S Nuclear Regulatory Commission Washington, DC, pp.6-8, 2002.
[16] 辜志承,「弧光保護於電力系統之應用」,電機月刊,第13卷第3期,2003。
[17]“Partial Discharge Measurements,” IEC 60270, IEC Central Office, Geneva, Switzerland, 2000.
[18] NFPA 70B, Recommended Practice for Electrical Equipment Maintenance, National Fire Protection Association, Quincy, MA, 2000.
[19] Elisabeth S. Papazoglou, “Flame Retardants for Plastic,” Handbook of Building Materials for Fire Protection, McGraw-Hill, pp.4-69, 2004.
[20] 楊有起、鄭增祿,「電氣防火實用技術」,北京經濟學院出版社,1995。

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE