簡易檢索 / 詳目顯示

研究生: 陳勁齊
Chin-Chi Chen
論文名稱: HEMA/PEGMA水膠之製備及其在隱形眼鏡材料之應用
Preparation of HEMA/PEGMA blend hydrogels for contact lens material
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 王大銘
Da-Ming Wang
蘇清淵
Ching-Yuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 85
中文關鍵詞: HEMAPEGMA抗蛋白水膠隱形眼鏡
外文關鍵詞: HEMA, PEGMA, anti-protein, hydrogel, contact lens
相關次數: 點閱:472下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文以甲基丙烯酸-2-羥基乙酯(2-Hydroxylethyl methacrylate, HEMA)及親水性抗蛋白單體甲基丙烯酸聚乙二醇酯(poly(ethylene glycol) methacrylate, PEGMA)為單體,再加入diethoxy acetophenone (DEAP) 光起始劑以及交聯劑Tetraethyl Orthosilicate (TEOS),以UV起始法經由自由基共聚合製備HEMA-PEGMA水膠,以提高HEMA水膠之親水性以及增加其抗蛋白性。
根據實驗結果得知,HEMA-PEGMA水膠的含水率隨著PEGMA的含量增加而上升,而接觸角也因PEGMA的加入而降低,因而提高水膠的親水性。此外,氧穿透率(oxygen transmittance,Dk )也相對增加。相反地,其機械強力(mechanical strength)方面卻會隨著PEGMA的增加而有下降的趨勢。HEMA-PEGMA水膠的透光度在可見光範圍可達94%以上。而在蛋白質吸附試驗中,我們利用BCA 蛋白質測定方法來探討,結果顯示隨著PEGMA的含量增加,能夠明顯的降低蛋白質吸附。在細胞毒性方面,以ISO10993-5的判定上屬於0-1 級,所以其細胞毒性是通過標準的。針對這些特性,未來可以利用此水膠來作為隱形眼鏡及眼科材料之運用。


In this work, hydroxyethyl methacrylate (HEMA) was copolymerized with poly(ethylene glycol) methacrylate (PEGMA) into hydrogel via ultraviolet (UV) initiation with diethoxy acetophenone (DEAP) as the initiator and tetraethyl orthosilicate (TEOS) as the crossliking agent to increase hydrophilicity and anti-protein adsorption.
The results show that the increase in PEGMA content led to the decrease of water contact angle and the increase of water content (EWC) for the blend hydrogels. Moreover, the oxygen transmittance (Dk) increased with the increase of EWC. The mechanical strength of the hydrogel also decreased with the PEGMA content. The HEMA-PEGMA hydrogels exhibited high optical transmittance (over94%). When the PEGMA content reached 20%, the apparent protein adsorption amount decreased to about 75% of that of HEMA control. Thus the HEMA-PEGMA hydrogels exhibited the ability to resist protein adsorption. Furthermore, these hydrogel were non-cytotoxic through in vitro L929 fibroblasts proliferation assay. Overall results demonstrated that the HEMA-PEGMA hydrogels exhibited relatively high oxygen permeability, hydrophilicity, optical transparency, and anit-protein adsorbtion , therefore would be applicable as contact lens material.

中文摘要 2 英文摘要 3 誌謝 4 目錄 5 圖索引 7 表索引 8 第一章 緒論 8 1-1 研究背景 9 1-2 研究目的 10 第二章 文獻回顧 11 2-1 水膠的定義 11 2-2 水膠之分類 12 2-3 功能性水膠 14 2-4 隱形眼鏡的介紹 19 2-5 隱形眼鏡的分類 23 2-6 隱形眼鏡材料的特殊性質 28 2-7 隱形眼鏡之蛋白質吸附 32 2-8 聚乙二醇單甲基丙烯酸酯 (Poly(ethylene glycol) methacrylate, PEGMA) 35 2-9 紫外光硬化交聯原理 36 第三章 實驗材料與方法 38 3-1 實驗項目流程圖 38 3-2 實驗原理 39 3-3 實驗材料 40 3-4 實驗設備 42 3-5 實驗步驟 43 3-6 物理性質檢測 44 3-6-1 平衡含水量(Equilibrium water content)的測試 44 3-6-2 UV可見光的測定 44 3-6-3 熱重分析(Thermogravimetric Analysis) 44 3-6-4 FTIR之光譜鑑定 45 3-6-5 透氧係數測定 45 3-6-6 強力試驗 46 3-6-7 接觸角測試(Contact angle measurement) 47 3-7 生物性質檢測 47 3-7-1 蛋白質吸附實驗 48 3-7-2 細胞毒性 49 第四章 結果與討論 52 4-1 HEMA-PEGMA水膠之合成 52 4-2 含水率測試 54 4-3 透氧率測試 56 4-4 機械強度 61 4-5 TGA熱重量分析 64 4-6 FTIR官能基分析 66 4-7 接觸角測試 68 4-8 透光率測試 70 4-9 蛋白質吸附 72 4-10 細胞毒性 74 第五章 結論 77 第六章 參考文獻 79 作者簡介 85

[1] 許瓊文,”嬌生攻下五成眼鏡族市場的秘密”,今周刊,期518,pp.112-113,2006。
[2] 吳志凌,”隱形眼鏡自動光學檢測系統之設計與開發”,碩士論文(2007)。
[3] Mei-Hui Yang, Lain-Jong Li, Tsang-Feng Ho, Synthesis and Characterization of polymethylsiloxane/poly(ethylene glycol) monomethyl ether copolymers. ,J. Ch. Colloid & Interface Soc, 1994 ,vol17,(3),p19-28.
[4] Yu-Chin Lai, A Novel Crosslinker for UV Copolymerization of N-vinyl Pyrrolidone and Methacrylates To Give Hydrogels, J. Polym. Sci., A, Polym. Chem., 1997, vol 35, p1039-1046.
[5] C.H. Dohlman, E.J. Dudenhoefer, B.F. Khan, S. Morneault, Protection of the ocular surface after keratoprosthesis surgery: the role of soft contact lenses, CLAO J. (28) (2002) 72-74
[6] 藍偉倫,1993,〝隱形眼鏡上的沈積物〞,視康專業雜誌,5&6,頁4-8
[7] Ratner B. D. and Hoffman.A. S., “Synthetic hydrogel for biomedical application”, ACS Symposium Ser., 31, 1 (1976).
[8] Barenberg S. A., “Abridgel Report of the Committee to Survey the Needs and Opportunities for the Biomaterials Industry”, J. Biomed. Mater. Res., 22, 1267 (1988).
[9] Hoffman A. S., “Hydrogels for biomedical applications”, Advanced Drug Reviews 43, 3-12 (2002).
[10] R. W. Korsmeyer, Diffusion controlled systems: hydrogels, in: P. J. Tarcha (Ed.), Polymers for controlled drug delivery, CRC Press, Cpapter 2, 1991.
[11] N. A. Peppas. (Ed.), Hydrogels in medicine and pharmacy, Vol. 1 RC Press, 1988
[12] Derek. G. Oedley, Peter J.Skelly and Bbrian J.Tighe. The British Polymer Journal,Vol,12 Sept,99(1980)
[13] 陳進富,淺談水膠在生醫之應用,化工科技與商情,2002, V38
[14] http://www.chemnet.com.tw/magazin/200211/index9.htm
[15] O. Wichterle, D. Lim, Hydrophilic gels in biologic use, Nature 1960,185, 117.
[16] R. Bettini, P. Colombo, N. A. Peppas, Solubility effects on drug transport through pH-sensitive, swelling-controlled release system :Transport of theophylline and metoclopramide monohydrochloride, J. Controlled Release 1995, 37, 105-111.
[17] H. Cicek, A. Tuncel, Immobilization of á-chymotypsin in thermally reversible iso-propylacrylamide-hydroxy-ethylmethacrylate copolymergel, J. Polym. Sci., Part A Polym. Chem. 1998, 36, 543-552.
[18] H. Brondsted, L. Hovgaard, L. Simonsen, Dextran hydrogels forcolon-specific drug delivery. Comparative release study of hydrocortisone and prednisolone sodium phosphate, Stp. Pharma. Sci.1995, 5, 65-69
[19] T. Coviello, M. Grassi, G. Rambone, E. Santucci, M. Carafa, E. Murtas,F. M. Riccieri, F. Alhaique, Novel hydrogel system from sceroglycan :synthesis and characterization, J. Controlled Release 1999, 60, 367-378.
[20] A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, S. C. de Smedt, J.Demeester, J. Krijgsveld, S. A. J. Zaat, J. Dankert, J. Feijen, Combined gleatin-condroitin sulfate hydrogels for controlled release of cationic antibacterial proteins, Macromolecules 2000, 33, 3705-3713.
[21] N. A. Peppas, R. E. Benner, Proposed method of intracordal injectionand gelation of poly(vinyl alcohol) solution in vocal cords: polymer consideration, Biomaterials1980, 1, 158-162
[22] W.R. Gombotz, S.F. Wee, Protein release from alginate matrices, Adv. Drug Deliv. Rev. 1991, 31, 267-285.
[23] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, K. Monobe, Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid Polym. Sci. 1986,264, 595-601.
[24] D. W. Lim, T.G. park, Stereo complex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein delivery microparticulate carriers, J. Appl. Polym. Sci. 2000, 75,1615-1623.
[25] N. A. Peppas. (Ed.), Hydrogels in medicine and pharmacy, Vol. 1 CRC Press, 1988.
[26] 李書豪,具環境應答型之網狀互穿型生醫水膠之合成及其藥物制放之應用,國立清華大學化學工程研究所碩士論文(2002)

[27] Yong Qiu and Kinam Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 53 (2001) p321
[28] H.Katono, A.Maruyama, K.Sanui, T.Okano, Y.Sakurai, Thermoresponsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butylamide) and poly(acrylic acid),J.Contr.Release 16(1991) p215
[29] 佘勝雄,利用二階段式自由基共聚合製備酸鹼應答型水膠及性質探討,國立中興大學化學工程研究所碩士論文(2002)
[30] J. Anzai, A. Ueno, H. Sasaki, K. Shimokawa and T. Osa. Photo controlledPermeation of alkali cation through poly (vinyl chloride)crown ether membrane. Makromol. Chem. Rapid Commun,4, 731 (1983)
[31] K. Ishihara and I. Shionhara. Photo induced permeation control of proteins using amphiphilic azoaromatic polymer membrane. J. Polym. Sci. Polym. Let. Ed., 22, 515 (1984)
[32] A. Mamada, T.Tanaka, D.Kungwachakum, M.Irie, Photo induced phase transition of gels ,Macromolecules 23(1990),p1517-1519
[33] 林明宏,AAc/HEMA 水膠之平衡膨潤與彈性模數性質,國立中興大學化學工程所碩士論文(2004)
[34] Albertsson, A.-C. and S. Karless, Biodegradation and Test Methods for Environmental and Biomedical Applications of Polymer. Degradable Materials, 1990.
[35] Anderson, J. P. E., Principles of and Assay System for Biodegradation. Biotechnology and Biodegradation, 1989.
[36] Vert, M., Bioresorbable Polymers for Temporary Therapeutic Application. Die Angewandte Makromolekulare Chemie, 1989.
[37] I. C. Kwon, Y. H. Bae, and S. W. Kim. Electrically erodible polymer gel for controlled release of drugs. Nature, 354, 291 (1991)
[38] Vasilevskaya, V. V., Starodubtzev, S. G. and Khokhlov, A. R. “Conformational transitions in polymer gels: theory and experiment,” Adv. Polym. Sci, 109, 123-171(1993)
[39] Chung, D. J., Ito, Y. and Imanishi, Y. “An insulin-releasing membrane system on the basis of oxidation reaction of glucose,” J. Control. Release, 18, 45-54 (1992)
[40] T. A. Horbeet, B. D. Ratner, J. Kost and M. Singh. A bioresponsive membrane for insulin delivery, Recent Advances in Drug Delivery System, Penum Press, 1984.
[41] 陳翊中,”台系隱形眼鏡廠打進世界前五大”,今周刊,期518,pp.114,2006。
[42] 原著 Richard P. Franz, R. Erich Bauman,主譯瞿佳,隱形眼鏡基礎,上海科學技術出版社,1994
[43] 齊備,隱形眼鏡手冊,上海科學技術出版社,1997
[44] 瞿佳、呂帆,隱形眼鏡學,上海科學技術出版社,1997
[45] Robert Edwards, ”CONTACT LENSES A-Z”, Caroline Makepeace
[46] Cooper S. L., and Peppas N. A., Biomaterials: InterfacialPhenomena and Applications; ACS Advances in Chemistry Series 199; American Chemical Society: Washington, DC, (1982).
[47] Chen Y., Kang E.T., Neoh K.G., Wang P., K.L. Tan, Surface modification of polyaniline film by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. Synthetic Metals, 110: 47-55, (2000)
[48] Dey R. K., and Ray A. R., Synthesis, characterization, and blood compatibility of polyamidoamines copolymers. Biomaterials, 24: 2985-2993, (2003).
[49] Kim Y. H., Han D. K., Park K. D., and Kim S. H., Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 24: 2213-2223, (2003).
[50] Kang I. K., Kwon O. H., Kim M. K., Lee Y. M., and Sung Y. K., In vitro blood compatibility of functional group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge. Biomaterials, 18: 1099-1107, (1997).
[51] Chapman A. P., PEGylated antibodies and antibody fragments for improved therapy: a review. Advanced drug delivery reviews, 54: 531-545, (2002).
[52] Lee J. H., Jeong B. J., and Lee H. B., Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. Journal of Biomedical Materials Research Part A, 34: 105-114, (1997).
[53] Chang Y., Shih Y. J., Ruaan R. C., Higuchi A., Chen W. Y., and Lai J. Y., Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 309: 165-174, (2008).
[54] Xiang Y. Q., and Chen D. J., Preparation of a novel pH-responsive silver nanoparticle/poly (HEMA-PEGMA-MAA) composite hydrogel. European Polymer Journal, 43: 4178-4187, (2007).
[55] Hu F., Neoh K. G., Cen L., and Kang E. T., Cellular response to magnetic nanoparticles ‘‘PEGylated’’ via surface-initiated atom transfer radical polymerization. Biomacromolecules, 7: 809–816, (2006).
[56] 林建宏,聚二甲基矽氧烷混成水膠薄膜之改質及其眼科性質之探討,國立台灣科技大學高分子工程研究所博士論文(2010)
[57] V. Y. Kotomkin, V. A. Baburina, E. P. Lebedov, V. A. Bylev, T. E.Yasmikova, and V. O. Reikhsfeld, Khimyai Parki Primonennie,Kremnii I Fosforogan, Soedin L, 23(1980); Chem. Abstr., 95:43841d.
[58] S Abiraman, HK Varma, TV Kumari, PR Umashankar, Annie John. Preliminary in vitro and in vivo characterizations of a sol-gel derived bioactive glass-ceramic system. Bull Mater Sci 2002;25(5):419-29
[59] AP Marques, RL Reis, JA Hunt. The biocompatibility of novel starch-based polymers and composites : in vitro studies. Biomaterials 2002;23:1471-8
[60] Beek MV, Jones L, Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 2008;29:780-9.
[61] L. Florkey, B.A. Fink, L. Mitchell, R.M. Hill, Tear exchange and oxygen reservoir effects in silicone hydrogel systems, Eye & Contact Lens: Science and Clinical Practice 29 (1) (2003) 90–92.
[62] C.O. Ng and B.J. Tighe, Polymer in Contact Lens Applications VI. The “Dissolved” Oxygen Permeability of Hydrogels and the Design of Materials for Use in Continuous-Wear Lenses , Br.Polym. J.118, 78 (Dec .1976 )
[63] S. H. OU, H. ISHIDA, J. B. LANDO, Investigation of Ethylene-Vinyl Alcohol Copolymers for surface Modification of contact Lenses, J.polym. Sci. Part B,1991, v29 p67
[64] 林瑋娟,Poly(HEMA)系列膠體之製備與性質之研究,大同大學化學工程研究所碩士論文(2001)
[65] Jay F. kunzler, US Patent, US 2004/0152859 A1, (2004).
[66] M. B. Huglin and M. B. Zakaria, Observation on the Homogeneity of Crosslinked Copolymers Prepared by λ-irradiation , Polymer ,25,797 (1997)
[67] Wang R. L. C. and Kreuzer H. J., Molecular Conformation and Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption. The journal of Physical Chemistry B, 101: 9767-9773, (1997)
[68] Benhabbour S. R., Sheardown H., and Adronov A., Protein Resistance of PEG-Functionalized Dendronized Surfaces: Effect of PEG Molecular Weight and Dendron Generation. Macromolecules, 41: 4817-4823, (2008).
[69] Feng W., Zhu S., Ishihara K., and Brash J. L., Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 1: 50-60, (2006).

無法下載圖示 全文公開日期 2015/07/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE