簡易檢索 / 詳目顯示

研究生: 莊朝印
C.-Y. Chuang
論文名稱: 聚烯烴彈性體於結晶/非結晶摻合體影響效應之研究
A Study on Compatibility and Proton Exchange Membrane of Polyolefin Blends
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 馬振基
Chen-Chi M. Ma
邱士軒
Shih-Hsuan Chiu
張豐志
Feng-Chih Chang
李俊毅
Jiunn-Yi
陳登科
Teng-Ko Chen
邱文英
Wen-Yen Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 107
中文關鍵詞: 聚烯烴摻合相容劑燃料電池質子交換膜
外文關鍵詞: Polyolefin, Blend, Compatibilizer, Fuel Cell, Proton Exchange Membrane
相關次數: 點閱:380下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚烯烴材料有泛用塑膠(plastics)、彈性體(elastomers)及環狀聚烯烴共聚合物(cyclic olefin copolymers; COC)等類型。本研究利用polyethylene-octene elastomer(POE)接枝maleic anhydride(MA)成POE-g-MA共高分子(copolymer)當相容化劑及增黏改質劑,對SPET(sulfonated poly(ethylene terephthalate)/COC(cyclic olefin copolymer)、PA(polyamide)/TPU(thermoplastic polyurethane)等摻合物(blends)進行摻合加工改質研究,並利用機械性質(mechanical properties)測試分析,動態機械性質分析(dynamic mechanical analysis, DMA),形態學(morphology)觀察及流變儀(rheological analysis)等儀器分析之。此外,利用COC混摻陽離子型光起始劑(photoinitiator; P.I.)製得之薄膜,探討應用於直接甲醇燃料電池質子交換膜之可行性。

POE-g-MA當相容化劑導入80SPET/20COC的基材中,以80SPET/20COC/15POE-g-MA比例可獲得以下結論:
1、 在機械性質分析中,SPET之拉伸強度、彎曲強度、彎曲模數均最高,因此加入機械強度不及的COC及具彈性的POE-g-MA無論拉伸強度、彎曲強度、彎曲模數均下降。在衝擊強度方面,因SPET分子量低及15PHR的POE-g-MA未達韌性、脆性的轉換點使80PET/20COC/15POE-g-MA在室溫、50℃及100℃下均呈脆性態。
2、 從形態觀察研究中發現,COC在SPET表面留下約1~3μm細且圓的坑洞及粒子,POE-g-MA在SPET中留下約5~30μm粗大且不平整的坑洞及粒子。
3、 DMA分析研究中發現,80SPET/20COC/15POE-g-MA的SPET側的Tg向高溫移動,而肩形部位則往低溫偏移。顯示,SPET與COC及POE-g-MA均有部分相容。
4、 從流變行為的分析研究中發現,POE-g-MA的黏度大於SPET數十倍,COC約大於SPET十倍。而80SPET/20COC/15POE-g-MA則略高於SPET。

POE-g-MA當增黏劑導入80PA/20TPU的基材中,以80PA/20TPU/15POE-g-MA比例可獲得以下結論:
1、 剪切黏度為由高至低為POE-g-MA,PA,TPU,20PHR的POE-g-MA有助於80PA/20TPU的黏度提升產生增塑效果。
2、 80PA/20TPU/20POE-g-MA的拉伸強度優於80PA/20TPU並具有加乘性,證明80PA/20TPU/20POE-g-MA彼此的相容。
3、 80PA/20TPU/20POE-g-MA之衝擊強度大於800J/m,具有超韌的效果。
4、 80PA/20TPU 比例下TPU呈現0.5μm的顆粒分布在PA的基材中,且有約0.1μm的細孔。80PA/20TPU/20POE-g-MA斷面的孔洞遠小於80PA/20TPU。

COC添加10、30、50PHR(parts per hundred resin)陽離子型光起始劑(P.I.)製得之薄膜於質子傳輸及物性研究方面,可歸納以下結果:
1、 COC/P.I.摻合膜中P.I.比例提升有助於提高薄膜的導電率、含水率及質子傳導能力。且光照後之薄膜其導電率與含水率更高於光照前。
2、 COC/P.I.摻合膜之應力、應變隨P.I.含量增加而下降。
3、 COC/P.I.摻合膜的耐熱性足以應付質子交換膜的操作溫度。
4、 COC/P.I.摻合膜中P.I.比例提升有助於降低甲醇水溶液蒸氣的滲透率。且光照後的薄膜均更高於光照前。


The polyolefin has several types, such as plastics, elastomers and cyclic olefin copolymers. In this research, the POE-g-MA Copolymer, made by grafting Maleic Anhydride(MA) to Polyethylene-Octene-Elstomer(POE), is taken as a compatibilizer and a tackiness agent in blending modified process of the SPET(Sulfonated Poly (ethylene Terephthalate))/COC(Cyclic Olefin Copolymer) and PA (Polyamide)/TPU(Thermoplastic Polyurethane), respectively. The characteristics of blending modify process of the POE-g-MA blending with two polymer blends were investigated, and the mechanical properties, dynamic mechanical analysis, morphology and rheological behavior were also studied. Also, the investigations of the applicability of COC/photo initiator blend membranes to the proton exchange membrane of the direct methanol fuel cells has been done in this paper.

Taking POE-g-MA as a compatibilizer, the polymer blend of the ratio 80SPET/ 20COC/15POE-g-MA gives the following results:
1. SPET has the highest tensile strength, highest flexural strength, and highest flexural modulus of SPET, COC and POE-g-MA. Blending relatively low mechanical strength material COC and elastic POE-g-MA with SPET decreased the tensile strength, flexural strength, and flexural modulus. In impact properties, the low molecular weight of SPET and the insufficient content of POE-g-MA are both not enough to the point of toughness and brittleness transition in the polymer blend, thus results the brittleness of the polymer blend no matter of what temperature is it within, room temperature, 50℃ or the higher temperature, 100℃.
2. In morphology study, blending COC results thin and spherical holes with around 1~3μm in diameter and particles on the surface of SPET; however, the POE-g-MA results huge and rough hole with 5~30μm in diameter and particles.
3. In dynamic mechanical analysis, the Tg of SPET shifts to higher temperature, however the shoulder shifts to lower. It indicated that SPET compatibilizes partially with both COC and POE-g-MA.
4. The rheological results indicated that the viscosity of POE-g-MA is dozen of times higher than SPET, and that of COC is about ten times higher than SPET. However, the viscosity of the blend 80SPET/20COC/15POE-g-MA is only slightly higher than SPET.

While POE-g-MA is used as a tackiness agent in 80PA/20TPU/20POE-g-MA polymer blend system gives results as follows:
1. The shear viscosity from the highest to the lowest is POE-g-MA, PA, and TPU. Blending 20 phr POE-g-MA with 80 PA/20 TPU polymer blend enhanced the melt viscosity and compatibility.
2. The 80PA/20TPU/20POE-g-MA blend has higher tensile strength than 80PA/20TPU, and has multiplying effect, also. This phenomenon is evidence of well compatibility of 80PA/20TPU to POE-g-MA.
3. The impact strength of 80PA/20TPU/20POE-g-MA is above 800J/m, reaching the super tough plastic grade.
4. In 80PA/20TPU blend, TPU existing as 0.5μm particles and small holes which area is about 0.1μm within the PA matrix. In 80PA/20TPU/20POE-g-MA, however, the holes extended lesser than in 80PA/20TPU.

Cyclic Olefin Copolymer/Photo Initiator Blend Membranes as Proton Exchange Membrane for Direct Methanol Fuel Cell gives results as follows:
1. Increasing the amount of photoinitiator in COC/PI blend membranes enhances membrane conductivity, moisture content, and proton transmission. The conductivity and moisture content of exposured membranes are even higher than those of un-exposured membranes.
2. The stress-strain values of COC/PI blend membranes decrease as photoinitiator content increases.
3. The thermal stability of COC/PI blend membranes is sufficiently high to allow them to withstand PEM operating temperatures.
4. Increasing the amount of photoinitiator in COC/PI blend membranes reduces the vapor permeance of methanol in aqueous solution. This effect was even greater for irradiated membranes than for un-exposured membranes.

中文摘要 III 誌謝 IX 圖目錄 XII 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 高分子摻合的分類 3 1.3 高分子摻合的製備 4 1.4 熱可塑性彈性體(Thermoplastic elastomers; TPE)的分類 5 1.5 Polyethylene-Octene Elastomer(POE)的特徵 5 1.6 COC材料介紹 8 1.7 POE的摻合研究 11 1.8 相容性的測定 13 1.9 燃料電池介紹 17 1.10 質子交換膜簡介 19 1.11 Nafion之結構及質子傳導機制 21 1.12 質子交換膜的分類 25 1.13 研究特徵與目的 28 1.14 研究策略圖說 29 1.15 研究架構 31 1.16 參考文獻 35 第二章 41 中文摘要 42 Abstract 43 2.1 前言 44 2.2 實驗 46 2.3 結果與討論 49 2.3.1 機械性質分析 49 2.3.2 相容性分析 53 2.3.3 形態觀察研究 55 2.3.4 流變行為研究(Rheological behavior) 56 2.4 結論 58 2.5 參考文獻 59 第三章 62 中文摘要 63 ABSTRACT 64 3.1 前言 65 3.2 實驗 66 3.2.1 材料 66 3.2.2 摻合加工及樣品製備 66 3.2.3 測試分析 67 3.3 結果與討論 68 3.3.1 流變行為 68 3.3.2 機械性質 70 3.3.3 型態(Morphology) 75 3.4 結論 76 3.5 參考文獻 77 第四章 78 中文摘要 79 Abstract 80 4.1 前言 81 4.2 實驗方法 83 4.3 結果與討論 87 4.4 結論 101 4.5 參考文獻 102 第五章 總結論 104 作者簡介 106 圖目錄 Fig. 1-1 Classification of polymer blends by the method of preparation 4 Fig.1-2 Chemical structure of COC 9 Fig.1-3 Property relationship in alloys and blends as function of concentration 16 Fig 1-4 燃料電池全反應及工作原理示意圖 19 Fig.1-5 Chemical structure of Nafion 22 Fig 1-6 Proton Hopping機制之示意圖 24 Fig 1-7 離子奈米通道的形成機制示意圖 24 Fig.1-8 Schematic illustration of immiscible polymer blends 29 Fig.1-9 Reactive coupling of a functionalized elastomers domain to a plastic matrix 29 Fig. 1-10 Schematic illustration of compatibilizers added to immiscible polymer blends 30 Fig. 2-1 Chemical structure of (a)SPET(b)COC(c)POE-g-MA 46 Fig. 2-2 The stress-strain curve of pure SPET, COC, and 80SPET/20COC/15POE-g-MA blends. 50 Fig. 2-3 Notched Izod impact strength versus termperature for SPET, COC, POE-g-MA, and 80PET/20PP/15POE-g-MA blends. (POE-g-MA is non-break at 25℃) 52 Fig. 2-4 The dynamic mechanical analysis of pure SPET, COC, and 80SPET/20COC/15POE-g-MA blends at a frequency of 1Hz and heating at 2℃/min. 54 Fig. 2-5 SEM micrographs of freeze fracture surfaces under liquid nitrogen of the 80SPET/20COC/POE-g-MA blend. (Note the different magnifications in (a) 200 and (b)300 (c) and (d)500 ) 55 Fig. 2-6 Rheological curves at 260℃ of SPET, COC, POE-g-MA, and 80PET/20COC/15POE-g-MA blends. 57 Fig. 3-1 Rheological curves at 245℃ of pure PA, TPU, POE-g-MA, and 80PA/20TPU(8A/2U), 80PA/20TPU/20POE-g-MA(8A/2U/2O) blends. 69 Fig. 3-2 The tensile stress of pure PA, TPU, POE-g-MA, and 80PA/20TPU (8A/2U), 80PA/20TPU/20POE-g-MA (8A/2U/2O) blends. 71 Fig. 3-3 The elongation of pure PA, TPU, POE-g-MA, and 80PA/20TPU (8A/2U), 80PA/20TPU/20POE-g-MA (8A/2U/2O) blends. 71 Fig. 3-4 The flexural stress of pure PA, and 80PA/20TPU (8A/2U), 80PA/20TPU/20POE-g-MA (8A/2U/2O) blends. 72 Fig. 3-5 The flexural modulus of pure PA, and 80PA/20TPU (8A/2U), 80PA/20TPU/20POE-g-MA (8A/2U/2O) blends. 73 Fig. 3-6 The Izod impact strength of pure PA, and 80PA/20TPU (8A/2U), 80PA/20TPU/20POE-g-MA (8A/2U/2O) blends. 74 Fig. 3-7 SEM micrographs of freeze fracture surfaces under liquid nitrogen of the (a) 80PA/20TPU (b) 80PA/20TPU/20POE-g-MA blend. (magnification 7000) 75 Fig 4-1 陽離子型光起始劑之光化學反應 88 Fig 4-2 30PHR之COC/P.I.薄膜SEM斷面圖 89 Fig 4-3 未經光照之COC/P.I.薄膜之導電率與水保持率 91 Fig 4-4 光照後之COC/P.I.薄膜之導電率與水保持率分析 92 Fig 4-5 不同比例COC/P.I.薄膜光照前之應力應變圖 94 Fig 4-6 不同比例COC/P.I.薄膜光照後之應力應變圖 94 Fig 4-7 不同光起始劑比例COC/P.I.薄膜之TGA圖 96 Fig 4-8 光照前COC/P.I.薄膜在30℃及80℃下的甲醇蒸氣滲透率 99 Fig 4-9 光照後COC/P.I.薄膜在30℃及80℃下的甲醇蒸氣滲透率 99 Fig 4-10 COC/P.I.薄膜在80℃下光照前後的甲醇滲濃度 100 表目錄 Table1-1 Classification of Polymer Blends 3 Table1-2 Classification of Thermoplastic Elastomers 5 Table1-3 Typical Properties of Engage 6 Table 1-4 Physical properties of COC 10 Table 1-5燃料電池之類型及特徵 18 Table 2-1 Mechanical properties of the SPET, COC, POE-g-MA, and PET/COC/POE-g-MA blends. 50 Table 4-1 COC/P.I.質子交換膜配方表 83 Table 4-2 不同比例COC/P.I.於不同光照時間之表面型態 88

1. Pracella, M.; Chionna, D.; Ishak, R.; Galeski, A. Polym-Plast Technol. 2004, 43, 1711
2. Lepers, J. C.; Favis, B. D.; Lacroix, C. J. Polym. Sci. Pol. Phys. 1999, 37, 939
3. Peng, J.; Qiao, J.; Zhang, S.; Wei, G. Macromol. Mater. Eng. 2002, 287, 867
4. Nabi Saheb D.; Joe, J. P. Adv. Polym. Tech. 2000, 19, 41
5. Kang, T. K.; Kim, Y.; Lee, W. K.; Park, H. D.; Cho, W. J.; Ha, C. S. J. Appl. Polym. Sci. 1999, 72, 989
6. Kalfoglou, N. K.; Skafidas, D. S.; Kallitsis, J. K.; Lambert, J. C.; Stappen, L. V. D. Polymer 1995, 36, 4453
7. Cart, T. L.; Moet, A. J. Appl. Polym. Sci. 1993, 48, 611
8. Kaci, M.; Benhamida, A.; Cimmino, S.; Silvestre, C.; Carfagna, C. Macromol. Mater. Eng. 2005, 209, 987
9. Yoon, K. H.; Lee, H. W.; Ok Park, O. J. Appl. Polym. Sci. 1998, 70, 389
10. Pracella, M.; Pazzagli, F.; Galeski, A. Polym. Bull. 2002, 48, 67
11. Pawlak, A.; Morawiec, J.; Pazzagli, F.; Pracella, M.; Galeski, A. J. Appl. Polym. Sci. 2002, 86, 1473
12. Loyens, W.; Groeninckx, G. Polymer 2002, 43, 5679
13. Paracella, M.; Rolla, L.; Chionna, D.; Galeski, A. Macromol. Chem. Phys. 2002, 203, 1473
14. Oromehie, A. R.; Hashemi, S. A.; Meldrum, I. G.; Waters, D. N. Polym. Int. 1997, 42, 117
15. Fasce, L.; Seltzer, R.; Frontini, P. Polym. Eng. Sci. 2005, 45, 354
16. Zdrazilova, N.; Hausnerova, B.; Kitano, T.; Saha, P. Polym Polym Compos, 2004, 12, 433
17. Chiu, H. T.; Hsiao, Y. K. J. Polym. Res. 2005,12, 355
18. Chiu, H. T.; Hsiao, Y. K. J. Polym. Res. 2006,13, 153
19. Bai, S. L.; Wang, M. Polymer 2003, 44, 6537
20. Yu, Z. Z.; Ou, Y. C.; Hu, G.. H. J. Appl. Polym. Sci. 1998, 69, 1711
21. Yu, Z. Z.; Ke, Y. C.; Ou, Y. C.; Hu, G. H. J. Appl. Polym. Sci. 2000, 76, 1258
22. Hassan, A.; Othman, N.; Wahit, M. U.; Wei, L. J.; Rahmat, A. R.; Ishak, Z. A. M. Macromol. Symp. 2006, 239, 182
23. Guerrica-Echevarra, G..; Eguiazbal, J. I.; Nazbal, J. Macromol. Mater. Eng. 2005, 290, 38
24. G’Sell, C.; Bai, S. L.; Hiver, J. M. Polymer 2004, 45, 5785
25. Yu, Z. Z.; Lei, M.; Ou, Y.; Yang, G. Polymer 2002, 43, 6993
26. Zeng, N.; Bai, S. L.; G’Sell C.; Hiver, J. M.; Mai, Y. W. Polym. Int. 2002, 51, 1439
27. Arstegui, A.; Nazbal, J. Polym. Eng. Sci. 2003, 43, 1691
28. Arstegui, A.; Gaztelumendi, M.; Nazbal, J. Polymer 2001, 42, 9565
29. Ohishi, H. J. Appl. Polym. Sci. 2004, 93, 1567
30. Khanarian, G. Polym. Eng. Sci 2000, 40, 2590/
31. Hwang, S. J.; Yu, H. H. Jan. J. Appl. Phys. 2005, 44, 2541/
32. Kamerka, J.; Orth, R.; Ilic, B.; Czaplewski, D.; Wachs, T.; Craighead, H. G. Anal. Chem. 2002, 74, 5897
33. Pap, A. E.; Kords, K.; Juntenen, H.; Haapaniemi, E.; Leppvuori, S. Polym. Test. 2003, 22, 657
34. Huang, W. J; Chang, F. C.; Chu, P. J. Polymer 2000, 41, 6095
35. Johansson, B. L.; Larsson, A.; Ocklind, A. hrlund, Ǻ. J. Appl. Polym. Sci. 2002, 86, 2618
36. Arstegui, A.; Gaztelumendi, M.; Nazbal, J. Polymer 2001, 42, 9565
37. Wu, C. S.; Liao, H. T.; Lai, S. M. Polym.-Plast. Technol. 2002, 41, 645

QR CODE