簡易檢索 / 詳目顯示

研究生: 陳宏軒
Hung-Hsien Chen
論文名稱: 聯結車輛半拖車後輪轉向以改善第五輪穩定性研究
Investigation of Active Trailer Steering to Improve Fifth Wheel Stability of Articulated Vehicles
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 姜嘉瑞
Chia-Jui Chiang
張以全
I-Chuan Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 78
中文關鍵詞: 聯結車線性二次調節器主動式拖車轉向縮小型車輛
外文關鍵詞: articulated vehicle, linear quadratic regulator, active trailer steering, scaled vehicle
相關次數: 點閱:289下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聯結車在現今物流的過程中扮演著不可或缺的角色,然而質量大、重心高和機動性差等特性,使得事故發生率與致命性遠高於小型車輛,因此發展聯結車安全系統是勢在必行。為了能夠提升聯結車的側向穩定性,本研究發展一套車輛安全系統,藉由 LQR 控制半拖車(第三軸)轉向,以減少聯結車輛向後放大效應。本研究工作程序如下,首先選定聯結車線性模型作為設計 LQR 控制器之參照,並驗證聯結車線性模型的有效性,接著選擇適當的車輛期望狀態設計控制器,並進行道路情境的設計與模擬,最後將本研究所設計之控制器實際應用
於縮小型聯結車上。雖然模擬結果顯示所設計之控制器減少了聯結車的向後放大現象並成功防止車輛翻覆,但在實際實驗階段,由於實驗環境、感測器間的訊號干擾和車輛結構設計等原因,導致縮小型車輛無法順利的完成行駛情境並呈現向後放大效應。實驗最終,本研究改以觀察加入控制器後之車輛動態響應,結果表明,追蹤適當的期望第五輪角度可以改善聯結車第五輪的穩定性。


Articulated vehicles play an indispensable role in logistics nowadays. However, due to the characteristics of high weight, high center of gravity and poor maneuverability, the accident rate and fatality of articulated vehicles are much higher than those of cars. Therefore, it is necessary to develop safety systems for articulated vehicles. To improve the lateral stability of articulated vehicles, the active trailer steering (3rd axle) control strategies by LQR controller are developed to reduce the rearward amplification in this thesis. The working procedures of this thesis are as follows. First, select the linear model of articulated vehicle as the reference for the LQR controller design, and then verify the linear model of articulated vehicle. Second, select the appropriate desired vehicle states for controller design. Third, design road scenarios and complete simulations. Finally, implement the designed controller on a 1:10 scaled articulated vehicle. Although the simulation results show that the designed controller reduces the rearward amplification and prevents rollover as well, in the actual experimental case, due to the experimental environment, signal disturbance among sensors and unfavorable vehicle structure design, the scaled vehicle cannot successfully complete the expected road scenario to exhibit rearward amplification phenomenon. In the end of the experiment, the study changed to observe the vehicle dynamic response after adding the controller. The results show that tracking the proper desired fifth wheel angle can improve the fifth wheel stability of articulated vehicle.

第一章 緒論 1 1.1 前言與動機 1 1.2 文獻回顧 2 1.2.1 車輛事故型態 2 1.2.2 車輛安全系統 3 1.2.3 車輛模型 5 1.3 研究目標 6 1.4 工作項目 6 第二章 聯結車輛模型分析、驗證與情境設計 7 2.1 車輛模型 7 2.2 TruckSim 12 2.3 輪胎模型 13 2.4 模型驗證 16 2.5 道路情境設計 20 第三章 控制器設計 25 3.1 車輛期望狀態 25 3.2 LQR控制器 27 3.3 控制器設計與模擬結果 29 3.3.1 情境一 29 3.3.2 情境二 38 第四章 縮小型車輛實驗與討論 43 4.1 維度分析與結果 43 4.2 縮小型車輛硬體與通訊架構 46 4.3 實驗結果與討論 50 4.3.1 開路單車道變換 50 4.3.2 加入LQR控制器後之單車道變換 55 第五章 結論與檢討 66 5.1 研究總結 66 5.2 未來工作 66 參考文獻 67  

[1] National Highway Traffic Safety Administration (NHTSA). Federal motor vehicle safety standards (FMVSS) No. 136
[2] 安浩宇(2018)。藉由後輪轉向控制增進聯結車行駛與轉向穩定性。國立臺灣科技大學機械工程系碩士論文,未出版。台北市。
[3] Ritzen, P., Roebroek, E., Van De Wouw, N., Jiang, Z. P. and Nijmeijer, H. (2015). Trailer steering control of a tractor–trailer robot. IEEE Transactions on Control Systems Technology, vol. 24, no. 4, pp. 1240-1252.
[4] Dorion, S. L., Pickard, J. G. and Vespa, S. (1989). Feasibility of anti-jackknifing systems for tractor semitrailers. SAE transactions, vol. 98, pp. 130-144.
[5] Bouteldja, M., Koita, A., Dolcemascolo, V. and Cadiou, J. C. (2006). Prediction and detection of jackknifing problems for tractor semi-trailer. 2006 IEEE Vehicle Power and Propulsion Conference, Windsor, UK, pp. 1-6.
[6] Kusters, L. J. (1995). Increasing roll-over safety of commercial vehicles by application of electronic systems. Smart vehicles, pp. 362-378.
[7] Mikulcik, E. C. (1971). The dynamics of tractor-semitrailer vehicles: The Jackknifing Problem. SAE Transactions, vol. 80, pp. 154-168.
[8] Azad, N. L., Khajepour, A. and McPhee, J. (2005). Analysis of jackknifing in articulated steer vehicles. 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, pp. 86-90.
[9] LeBlanc, P. A., El-Gindy, M. and Woodrooffe, J. H. F. (1989). Self-steering axles: theory and practice. SAE transactions, vol. 98, pp. 156-170.
[10] Woodrooffe, J., LeBlanc, P. and El Gindy, M. (1989). Self steering axles and the commercial vehicle. International Heavy Vehicle Seminar, Christchurch, New Zealand.
[11] Henderson, C. (2001). An Investigaiont Into the Dynamic Stability and Road Friendliness of a Pivotal Bogie Semi-Trailer. Newcastle upon Tyne,, UK: University of Northumbria. MSc Thesis.
[12] Jujnovich, B. and Cebon, D. (2002). Comparative performance of semi-trailer steering systems. Proceedings of the 7th International Symposium on Heavy Vehicle Weights and Dimensions, Delft, The Netherlands, pp. 195-214.
[13] Chen, C. and Tomizuka, M. (1995). Steering and independent braking control for tractor-semitrailer vehicles in automated highway systems. Proceedings of 1995 34th IEEE Conference on Decision and Control, New Orleans, LA, pp. 1561-1566.
[14] Tianjun, Z. and Changfu, Z. (2009). Modelling and active safe control of heavy tractor semi-trailer. 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, vol. 2, pp. 112-115.
[15] Chen, L. K. and Shieh, Y. A. (2011). Jackknife prevention for articulated vehicles using model reference adaptive control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 225, no. 1, pp. 28-42.
[16] Kharrazi, S., Lidberg, M. and Fredriksson, J. (2013). A generic controller for improving lateral performance of heavy vehicle combinations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, no. 5, pp. 619-642.
[17] McCann, R. and Le, A. (2005). Electric motor based steering for jackknife avoidance in large trucks. 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, pp. 103-109.
[18] Sahin, H. and Akalin, O. (2020). Articulated Vehicle Lateral Stability Management via Active Rear-Wheel Steering of Tractor Using Fuzzy Logic and Model Predictive Control. SAE International Journal of Commercial Vehicles, vol. 13, no. 2, pp. 115-129.
[19] 洪英豪(2021)。後軸轉向輔助之縮小型聯結車實驗平台開發。國立臺灣科技大學機械工程系碩士論文,未出版。台北市。
[20] 簡言達(2021)。聯結車後輪輔助轉向之模型預測控制應用。國立臺灣科技大學機械工程系碩士論文,未出版。台北市。
[21] Feletcher, C. A. (2006). Trailer steering, An australian research perspective and application for by-wire control. Proceedings 9th International Symposium on Heavy Vehicle Weights and Dimensions, pp. 15-18.
[22] Cheng, C. and Cebon, D. (2008). Improving roll stability of articulated heavy vehicles using active semi-trailer steering. Vehicle System Dynamics, vol. 46, s. 1, pp. 373-388.
[23] Cheng, C., Roebuck, R., Odhams, A. and Cebon, D. (2011). High-speed optimal steering of a tractor–semitrailer. Vehicle system dynamics, vol. 49, no. 4, pp. 561-593.
[24] Ding, X., He, Y., Ren, J. and Sun, T. (2012). A comparative study of control algorithms for active trailer steering systems of articulated heavy vehicles. 2012 American Control Conference (ACC), Montreal, Canada, pp. 3617-3622.
[25] Oreh, S. T., Kazemi, R. and Azadi, S. (2012). A new desired articulation angle for directional control of articulated vehicles. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of multi-body dynamics, vol. 226, no. 4, pp. 298-314.
[26] Jujnovich, B. A. and Cebon, D. (2013). Path-following steering control for articulated vehicles. Journal of Dynamic Systems, Measurement, and Control, vol. 135, no. 3, pp. 1-15
[27] Wang, Q., Zhu, S. and He, Y. (2015). Model reference adaptive control for active trailer steering of articulated heavy vehicles. SAE Technical Paper.
[28] Kural, K., Hatzidimitris, P., van de Wouw, N., Besselink, I. and Nijmeijer, H. (2017). Active trailer steering control for high-capacity vehicle combinations. IEEE Transactions on Intelligent Vehicles, vol. 2, no. 4, pp. 251-265.
[29] Chen, C., and Tomizuka, M. (1995). Dynamic modeling of tractor-semitrailer vehicles in automated highway systems. PATH Technical Report, ITS, U.C. Berkeley.
[30] Chen, C. and Tomizuka, M. (1995). Dynamic modeling of articulated vehicles for automated highway systems. Proceedings of 1995 American Control Conference (ACC), Seattle, WA, vol. 1, pp. 653-657.
[31] Chen, C. and Tomizuka, M. (1997). Modeling and control of articulated vehicles. PATH Technical Report, ITS, U.C. Berkeley.
[32] Tabatabaei Oreh, S. H., Kazemi, R., Azadi, S. and Zahedi, A. (2012). A new method for directional control of a tractor semi-trailer. Australian Journal of Basic and Applied Sciences, vol. 6, no. 12, pp. 396-409.
[33] Haldane, M. J. and Bunker, J. M. (2002). Assessing the impacts of multi-combination vehicles on traffic operations and safety.
[34] Rajamani, R. (2011). Vehicle Dynamics and Control. Springer Science & Business Media.
[35] Wang, Q., Oya, M., Okumura, K. and Kobayashi, T. (2007). Adaptive steering controller to improve handling stability of combined vehicles. Second International Conference on Innovative Computing, Information and Control (ICICIC 2007), Kumamoto, Japan, pp. 428-428.
[36] Palkovics, L. and El-Gindy, M. (1996). Examination of different control strategies of heavy-vehicle performance. Journal of dynamic systems, measurement, and control, vol. 118, no. 3, pp. 489-498.
[37] Buckingham, E. (1914) “On physically similar systems; illustrations of the use of dimensional equations,” Physical review, vol. 4, pp.345-376.

QR CODE