簡易檢索 / 詳目顯示

研究生: 王振皓
Cheng-Hao Wang
論文名稱: FPO重組蛋白於聚多巴胺表面之固定化及在測定糖化血紅素(HbA1c)之應用
Immobilization of FPO on polydopamine modified surface and its application for HbA1c detection
指導教授: 李振綱
Cheng-kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 糖化血紅素(HbA1c)果糖基纈氨酸(FV)中性蛋白水解酶果糖基縮胺酸氧化酶(FPO)DA-64多巴胺戊二醛(GA)
外文關鍵詞: HbA1c, fructosyl valine(FV), neutral protease, FPO, DA-64, dopamine, glutaraldehyde(GA)
相關次數: 點閱:321下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • HbA1c指人體血液中的紅血球所含之糖化血紅素,當血液中的葡萄糖進入紅血球,但和血紅素結合後就形成糖化血紅素。一般紅血球平均壽命約為120天,因此血中糖化血紅素的濃度可以反映體內最近2-3個月的血糖控制情況。分析HbA1c含量的方法有許多種,本論文是以FPO(fructosyl peptide oxidase)氧化經Neutral protease水解HbA1c所產生的fructosyl valyl histidine(FVH)產生H2O2,再利用酵素呈色法進行偵測,推算HbA1c的濃度。
    本研究建構一套能夠利用酵素呈色方式測量血樣中HbA1c含量的程序,在60℃下中性蛋白水解酶最能有效水解血紅素,在活性單位(40KU/mL)水解酶下反應1.5小時就能將HbA1c水解釋出所有FVH片段,可以FPO進行氧化反應,所產生的H2O2可用HRP呈色反應偵測到5.2~15%的HbA1c,為能重覆使用FPO,而將FPO固定化於經聚多巴胺表面改質的PE膜上,發現經GA(glutaraldehyde)進一步修飾之聚多巴胺表面能提升FPO酵素的固定化量,此固定化的FPO在溫度4~60℃、pH 3~11下仍能保有相當的活性。固定化之FPO-PE膜可用於偵測FV濃度其線性範圍為0.02~0.7 mM,且使用至少7次擁有95%以上的活性,可用於測定血樣中之HbA1c濃度。


    Glycated hemoglobin (HbA1c) concentration of blood is usually measured to identify the average blood sugar concentration over prolonged periods of time. In this work, an enzymatic colorimetric method for the measurement of HbA1c concentration of blood was developed, FPO (fructosyl peptide oxidase) enzyme was used to oxidize fructosyl valyl histidine released from neutral protease hydrolyzed HbA1c. The oxidation produces hydrogen peroxide which was further reacted with DA-64 dye by peroxidase (horseradish peroxidase, HRP) to develop color.
    The optimum temperature for neutral protease to fully hydrolyze HbA1c was determined to be 60℃. One and half hours is required to have HbA1c been completely hydrolyzed when 40 KU/mL of neutral protease was employed. HbA1c concentration range from 5.2% to 15% can be detected. In order to reuse FPO enzyme, FPO was immobilized onto polydopamine modified PE membranes. It was found that further modified with glutaraldehyde (GA) on polydopamine-PE membranes could significantly enhance the immobilization efficiency of FPO. The stability of the immobilized FPO could also be improved that 95% activity still can be maintained after 7 consecutive reuse. The detection range of fructosyl valine by using immobilized FPO-PE membranes was 0.02-0.7mM.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究目的及研究內容簡介 2 第二章 文獻回顧 4 2.1糖化血紅素(Glycated hemoglobin)之來源與組成 4 2.1.1 HbA1C 6 2.2糖化血紅素的測定與分析 8 2.2.1陽離子交換樹脂層析法(Cation exchange HPLC) 9 2.2.2硼酸親合性層析法(Boronate affinity HPLC) 10 2.2.3免疫比濁法(Immunoassay) 11 2.2.4電化學法 11 2.2.5酵素比色法 12 2.3酵素比色法所使用的氧化酵素 13 2.3.1 FAO(Fructosyl amino acid oxidase) 14 2.3.2 FPO(Fructosyl peptide oxidase) 14 2.4酵素比色法測試糖化血紅素HbA1c所使用的呈色劑 17 2.5聚多巴胺塗層的形成原理及其應用進展 18 2.5.1聚多巴胺仿生塗層技術 19 2.6聚多巴胺塗層的形成機理 20 2.7聚多巴胺塗層的應用 22 2.7.1有機材料上聚多巴胺塗層的形成 22 2.7.2無機材料上聚多巴胺塗層的形成 24 2.8聚多巴胺塗層表面銜接有基聚合物和生物分子 24 2.9本論文的研究工作 25 第三章 實驗材料與方法 27 3.1實驗流程 27 3.2實驗材料 28 3.2.1菌株 28 3.2.2載體 28 3.2.3其它 28 3.3實驗藥品 28 3.4各種緩衝液與反應液 31 3.5實驗儀器及設備 34 3.6 E.coli重組基因菌株培養及FPO重組蛋白之生產 35 3.6.1 pET23a - FPO蛋白 35 3.6.2搖瓶培養 35 3.6.3 FPO重組蛋白之純化 36 3.7蛋白質電泳分析 37 3.8 FPO重組蛋白質之濃度分析 38 3.9 FPO-PE膜之蛋白質含量 39 3.10 FPO活性分析 39 3.11 FPO-PE膜活性分析 40 3.12 FPO與FPO-PE膜之酵素動力學測定 41 3.13修飾聚多巴胺Polydopamine於PE膜表面 41 3.14修飾戊二醛(GA)於Polydopamine-PE膜表面 42 3.15固定FPO於多巴胺與GA修飾後的PE膜表面 42 3.16製作聚多巴胺顆粒與GA修飾的聚多巴胺顆粒 43 3.17固定FPO於聚多巴胺顆粒與GA修飾過的聚多巴胺顆粒 43 3.18溫度與pH值對FPO活性的影響 44 3.19溫度與pH值對FPO-PE膜活性的影響 45 3.20 FPO-PE膜重覆使用性測試 45 3.21 FPO-PE膜的矽化 46 3.22 DPE-GA膜上醛基含量的測定 47 3.23加入反應基質FV,模擬偵測HbA1c的環境 48 3.24溶血與偵測HbA1c中fructosyl valyl histidine(FVH)的含量 49 3.25 FPO-PE膜偵測HbA1c中fructosyl valyl histidine(FVH)的含量 50 第四章 結果與討論 51 4.1模擬偵測血液中HbA1c濃度 51 4.2實際偵測血樣中HbA1c濃度 54 4.2.1用Neutral protease水解後血液的性質差異 54 4.2.2溫度對水解反應的影響 56 4.2.3利用DA-64測定FVH之檢量線 56 4.2.4反應時間對血紅素水解的影響 57 4.3 pET23a - FPO轉型之大腸桿菌表現生產FPO 59 4.3.1培養條件 59 4.3.2搖瓶培養E.coli(DE3) pET23a-FPO之生長曲線 59 4.4 DA-64之消光係數(ε)與FPO活性分析及其純化表 61 4.4.1消光係數(ε) 61 4.4.2 FPO活性分析及其純化表 62 4.5 酵素固定化 64 4.5.1固定化基材的特性 64 4.5.2 DPE-GA膜上醛基含量的測定 66 4.6 FPO固定化分析 67 4.6.1不同種類FPO-PE膜分析 67 4.6.2 GA對FPO酵素固定化的影響分析 69 4.7 FPO-PE膜之重覆使用性 71 4.8 FPO-PE膜的存放穩定性 72 4.9矽化對FPO-PE膜活性之影響 73 4.10固定化FPO之特性分析 76 4.10.1酵素之熱穩定性 76 4.10.2酵素之pH穩定性 77 4.10.3自由與固定化酵素之酵素動力學 78 4.11 FPO-PE膜偵測FV之濃度範圍 80 4.12 FPO-PE膜測定FVH 81 第五章 結論 82 第六章 建議 83 參考文獻 84

    Akazawa, S., Karino, T., Yoshida, N., Katsuragi, T., Tani, Y., 2004. Functional Analysis of Fructosyl Amino Acid Oxidase of Aspergillus oryzae. Environmental Microbiology,70(10):5882-5890.
    Blaedel, W.J., Uhi, J.M., 1975. Nature of Materials in Serum That Interfere in the Glucose Oxidase-Peroxidase--o- Dianisidine Method for Glucose, and Their Mode of Action. Clinical Chemistry, 21(1):119-124
    Bunn, H.F., Haney, D.N., Kamin,S., Gabbay,K.H., Gallop, P.M.,1976. The Biosynthesis of Human Hemoglobin A. Clinical Investigation, 57:1652-1659.
    Bernsmann, F. et al., 2009. Characterization of Dopamine-Melanin Growth on Silicon Oxide.
    Bourmaud, A., Riviere, J., Le Duigou, A., Raj, G., Baley, C., 2009. Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polymer Testing, 28(6): 668-672.
    Chien, H.C., Chou, T.C., 2010. Glassy Carbon Paste Electrodes for the Determination of Fructosyl Valine. Electroanalysis, 22(6): 688 – 693.
    Coyne, K., Qin XX, JH., W., 1997. Extensible Collagen in Mussel Byssus: A Natural Block Copolymer.
    Fei, B. et al., 2008. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon, 46(13): 1795-1797.
    Ferri, S., Kim, S., M. Eng., Tsugawa, W., Sode, K., 2009. Review of Fructosyl Amino Acid Oxidase Engineering Research: A Glimpse into the Future of Hemoglobin A1c Biosensing. J Diabetes Sci Technol, 3(3):585-592.
    Gabriele, H.B., Katzensteiner, S., Schnedl, W.,Pu‥ rstner, P., Pieber, T., and Martie, W.T., 1997. Comparative evaluation of three assay systems for automated determination of hemoglobin A1c. Clinical Chemistry, 43(3):511-517.
    Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N.,Wang, T., Feng, J.,Yang, D.,Perrett, S.,Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2:577-583.
    Hirokawa, K., Gomi, K., Kajiyama, N., 2003. Molecular cloning and expression of novel fructosyl peptide oxidases and their application for the measurement of glycated protein. Biochemical and Biophysical Research Communications, 311:104–111.
    Hirokawa , K., Nakamura, K., Kajiyama, N., 2004. Enzymes used for the determination of HbA1C. FEMS Microbiology Letters, 235:157–162.
    Hirokawa, K., Shimoji, K., Kajiyama, N., 2005. An enzymatic method for the determination of hemoglobinA1C. Biotechnology Letters, 27: 963–968.
    Hong, S. et al., 2012. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 22(22): 4711-4717.
    Iberg, N., Fluckiger, R., 1986. Nonenzymatic Glycosylation of Albumin in Vivo.The Journal of Biological Chemistry,261(29): 13542-13545.
    Isarankura-Na-Ayudhya,Chartchalerm1,Tansila1,N.,Worachartcheewan, A., Bulow, L., and Prachayasittikul, V.,2010. Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity. J. Microbiol. Biotechnol, 20(3):532–541.
    Jeppsson, J.O., Kobold, U.,Barr, J., Finke, A., Hoelzel, W.,Hoshino, T., Miedema, K., Mosca, A., Mauri, P.,Paroni, R., Thienpont, L., Umemoto., M., Weykamp, C., 2002. Approved IFCC Reference Method for the Measurement of HbA1c in Human Blood. Clin Chem Lab Med , 40(1):78–89.
    Kang, S.M., Ryou, M.-H., Choi, J.W., Lee, H., 2012. Mussel- and Diatom-Inspired Silica Coating on Separators Yields Improved Power and Safety in Li-Ion Batteries. Chemistry of Materials, 24(17):3481-3485
    Kim, S., Ferri, S., Tsugawa, W., Mori, K., Sode, K., 2010. Motif-Based Search for a Novel Fructosyl Peptide Oxidase From Genome Databases. Biotechnology and Bioengineering, 106(3):358-366.
    Kobold, U., Jeppsson, J.O., Du‥ lffer, T., Finke, A., Hoelzel, W., Miedema, K., 1997. Candidate reference methods for hemoglobin A1c based on peptide mapping. Clinical Chemistry, 43(10):1944-1951.
    Kulma, A., Szopa, J., 2007. Catecholamines are active compounds in plants. Plant Science, 172(3): 433-440.
    LaVoie, M.J., Beth L Ostaszewski, Andreas Weihofen, Selkoe, M.G.S.D.J., 2005. Dopamine covalently modifies and functionally inactivates parkin. Nature medicine, 11(11): 1241-1248.
    Lee, C.-K., Sureshkumar, M., 2011. Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization. Carbohydrate Polymers, 84(2): 775-780.
    Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B., 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849): 426-30.
    Lee, H. et al., 2008a. Substrate-Independent Layer-by-Layer Assembly by Using Mussel-Adhesive-Inspired Polymers. Advanced Materials, 20(9): 1619-1623.
    Lee, H., Scherer, N.F., Messersmith, P.B., 2006. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A, 103(35): 12999-3003.
    Lee, Y. et al., 2008b. Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv Mater, 20(21): 4154-4157.
    Liu, L., Hood, S., Wang, Y., Bezverkov, R., Dou, C., Datta, A., Yuan., C., 2008. Direct enzymatic assay for %HbA1c in human whole blood samples. Clinical Biochemistry, 41:576–583.
    Lynge, M.E., Westen, R., Postmab, A., Stadler, B., 2011. Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale, 3:4916–4928.
    Martin, R., Sua’rez., J.E., 2010. Biosynthesis and Degradation of H2O2 by Vaginal Lactobacilli. Environmental Microbiology, 76(2):400–405.
    Miura, S., Ferri, S., Tsugawa,W., Kim ,S., Sode, K., 2008. Development of fructosyl amine oxidase specific to fructosyl valine by site-directed mutagenesis. Protein Engineering, Design & Selection ,21(4): 233–239.
    Nanjo, Y., Hayashi, R., Yao, T., 2007. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer. Analytica Chimica Acta, 583: 45–54.
    Qin, X., Waite, J.H., 2001. Polyphosphoprotein from the Adhesive Pads of Mytilus edulis. Biochemistry , 40, 2887-2893
    Raabo, E., Terkildsen, T.C., 1960. On the Enzymatic Determination of Blood Glucose. Scandinav. J. Clin. & Lab. Investigation, 12:402-407.
    Ryou, M.H., Lee, Y.M., Park, J.K., Choi, J.W., 2011. Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries. Adv. Mater, 23:3066–3070.
    Sakurabayashi, I., Watano, T., Yonehara, S., Ishimaru, K., Hirai, K., Komori, T., Yagi, M., 2003. New Enzymatic Assay for Glycohemoglobin. Clinical Chemistry, 49(2):269-274.
    Schnedl, W.J., Krause, R., Gabriele, H.B.,Trinker, M., LIPP, R.W., Krejs, G.J., 2000. Evaluation of HbA1c Determination Methods in Patients With Hemoglobinopathies. Diabetes Care,23:339-344.
    Shapiro, R., McManus, J.M., Zalut, C., Bunn, H.F., 1980. Sites of Nonenzymatic Glycosylation of Human Hemoglobin A*. Biological Chemistry, 255(7):3120-3127.
    Sheikholeslam, S., Pritzker, M.D., Chen, P., 2011. Electrochemical Biosensor for Glycated Hemoglobin (HbA1c), Biosensors for Health, Environment and Biosecurity, Pier Andrea Serra (Ed.), ISBN: 978-953-307-443-6, InTech, 13:293-320.
    Sotiris E. Kakabakos, P.E.T., Gregory P. Evangelatos, Dionyssis S. Ithakissios, 1996. Measurement of the reactive and available solid-supported carboxylic, N-hydroxysuccinylated carboxylic, and aldehydo groups. Applied Biochemistry and Biotechnology, Volume 56, Issue 1 , pp 95-109.
    Song, S.Y., Yoon, H.C., 2009. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B, 140:233–239.
    Waite, J.H., Burzio, L.A., 2000. Cross-Linking in Adhesive Quinoproteins: Studies with Model Decapeptides. Biochemistry, 39: 11147-11153
    Weets I., Gorus, F.K., Gerlo, E., 1996. Evaluation of an Immunoturbidimetric Assay for Haemoglobin Alc on a CobasR Mira S Analyser. Eur J Clin Chem Clin Biochem, 34:449-453.
    Wolfgang, L. et al., 1996. Dopamine, 6-hydroxydopamine, iron, and dioxygen - their mutual interactions and possible implication in the development of Parkinson' s disease. Biochimica et Biophysica Acta, 1316: 160-168
    Xi, Z.-Y., Xu, Y.-Y., Zhu, L.-P., Wang, Y., Zhu, B.-K., 2009. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 327(1-2): 244-253.
    Ye, Q., Wang, X., Li, S., Zhou, F., 2010. Surface-Initiated Ring-Opening Metathesis Polymerization of Pentadecafluorooctyl-5-norbornene-2-carboxylate from Variable Substrates Modified with Sticky Biomimic Initiator. Macromolecules, 43(13): 5554-5560.
    Zeng, R., Luo, Z., Zhou, D., Cao, F., Wang, Y., 2010. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis, 31(19): 3334-41.
    Zhu, L.P., Yu, J.Z., Xu, Y.Y., Xi, Z.Y., Zhu, B.K., 2009. Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization. Colloids Surf B Biointerfaces, 69(1): 152-5.

    無法下載圖示 全文公開日期 2018/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2018/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE