簡易檢索 / 詳目顯示

研究生: 林郁娟
Yu-Chuan Lin
論文名稱: 高協同作用之雙摻雜氮及硫於非貴金屬觸媒應用於酸性以及鹼性氧氣還原反應之研究
Synergistic effect of N and S incorporated non-noble metal catalyst for oxygen reduction reaction in acid and alkaline media
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
梁元彰
Yuan-Chang Liang
白益豪
Yi-Hao Pai
張孫堂
Sun-Tang Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 氧氣還原反應燃料電池非貴金屬觸媒雙摻雜
外文關鍵詞: Oxygen reduction reaction (ORR), fuel cells, non-precious metal catalyst, dual doping
相關次數: 點閱:430下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於溫室氣體日漸上升,造成全球暖化效應,再者石油能源問題每況愈下,因此,燃料電池具有高效能、低汙染且具再生性的綠色能源變成現今最重要議題。但由於其所使用的白金觸媒昂貴,造成無法普及化之問題,因此,希望發展低價格並具高效能的非白金觸媒已成為近年來研究之趨勢。
而本研究嘗試利用含氮及含硫之前驅物以雙摻雜之方式與鐵之前驅物經由適當比例混合製備非貴金屬觸媒。發現經由700oC熱處理以及前驅物氮硫比為2:1時,其有最佳之氧氣還原能力且其電子轉移數可達3.99,已非常接近理想之電子轉移數。在結構分析上,發現此最佳化條件之觸媒,其外層有類似石墨烯層狀結構,可使觸媒導電能力提高,有助於提升氧氣還原能力。在XPS中,由氮及硫之光譜分析可得知,最佳條件之觸媒含有較多的pyridinic-N、quaternary-N及thiophene-S,此類型結構皆可大幅提升氧氣還原能力。而從XAS分析中可以了解其觸媒之鍵結形式,並從中推論其觸媒之結構。另外,將觸媒以循環伏安法(CV)方式進行30000圈穩定性測試,可得知此觸媒在反應的過程中穩定性極佳且有不錯的抗甲醇效果。
因此可證實,雙摻雜含有氮和硫於觸媒裡,藉由氮和硫之協同作用之影響,可使得氧氣還原能力得以提升。


The growing of greenhouse gases, deteriorating oils and energy issues realize people for the importance of environmental protection. Therefore, the fuel cell is significantly important due to a high efficiency, low pollution and renewable green energy. Fuel cells usually use platinum as catalyst. Unfortunately, the cost of platinum is expensive and it is not economically applied. Moreover, the resources of platinum in the world are getting scarce. Based on this view, the developing of non-noble catalysts become an attractive research topic in recent years.
This study attempts to use precursors of nitrogen and sulfur as the dual doping by mixing with iron precursors as non-noble catalyst to replace the platinum catalyst. The prepared catalyst demonstrates good oxygen reduction ability after the pyrolysis with the electron transfer number of 3.99, which is very close to the ideal electron transfer number of 4.00. From the structure analysis, the graphene-like structure is found in the outer layer, which improves the oxygen reduction activity. In XPS spectrum for nitrogen and sulfur analysis, the high amount of pyridinic-N, quaternary-N and thiophene-S structure can significantly enhance the oxygen reduction activity. From XAS analysis, we can understand the bonding of element in the catalyst and speculate catalyst structure. In addition, the catalyst has an excellent stability after 30,000 cycles of stability test. It confirms that dual-doped containing nitrogen and sulfur can enhance the oxygen reduction ability by the synergistic effect.

中文摘要 I Abstract IIII 誌謝 XVI 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1-1 人類對能源的反思與新思維 1 1-2 高發電效能與低污染性新能源的開發 3 1-3 燃料電池的發展史 6 1-4 燃料電池的種類 8 1-4-1低溫型燃料電池 9 1-4-2中溫型燃料電池 10 1-4-3高溫型燃料電池 11 1-5質子交換膜燃料電池(PEMFC)介紹 12 1-6鹼性陰離子交換膜燃料電池(AAEMFC)介紹 14 1-7燃料電池內部構造 16 1-8燃料電池極化現象 18 第二章 電化學原理與文獻探討 21 2-1 電化學原理 21 2-1-1氧化還原反應 21 2-1-2氧氣還原途徑 21 2-1-3氧氣還原反應機制 23 2-1-4氧氣還原反應之電化學催化 25 2-2 文獻探討 28 2-2-1陰極端之非貴金屬觸媒 28 2-2-2氮摻雜之非貴金屬觸媒 31 2-2-3硫摻雜之非貴金屬觸媒 34 2-2-4氮及硫摻雜之非貴金屬觸媒 36 2-3 研究動機 39 第三章 實驗步驟及研究方法 40 3-1 實驗規劃 40 3-2實驗流程 41 3-3實驗材料及藥品 42 3-4實驗儀器與設備 43 3-5實驗步驟 44 3-5-1陰極觸媒製備 44 3-5-2 觸媒工作電極製備 45 3-6儀器分析原理 46 3-6-1 X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 46 3-6-2 熱重量分析儀(Thermogravimetric Analysis, TGA) 48 3-6-3 X光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 49 3-6-4 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 51 3-6-5比表面積及孔徑分析儀(Surface Area & Mesopore Analyzer) 55 3-6-6穿透式電子顯微鏡(Transmission Electron Microscope) 57 3-6-7拉曼光譜分析儀(Raman Spectrum) 59 3-6-8電化學分析儀 60 3-6-9燃料電池分析儀 64 4-1 Fe-M-LA/C觸媒材料 65 4-1-1 Fe-M-LA/C之熱分析 66 4-1-2 Fe-M-LA/C之氧氣還原反應活性比較 67 4-1-3 Fe-M-LA/C之X光繞射分析 73 4-1-4 Fe-M-LA/C之X光電子能譜分析 76 4-1-5 Fe-M-LA/C之X光吸收光譜分析 87 4-2 拉曼光譜分析 91 4-2-1 Fe-M-LA/C之穿透式電子顯微鏡分析 93 4-2-2 Fe-M-LA/C、Fe-M/C及Fe-LA/C之氧氣還原反應活性比較 95 4-2-3 Fe-M-LA/C、Fe-M/C及Fe-LA/C之X光吸收光譜分析 99 4-2-4 Fe-M-LA/C之等溫吸附曲線與比表面積探討 103 4-3 Fe-M-LA/C觸媒之抗甲醇能力 105 4-4 Fe-M-LA/C觸媒之穩定性測試 106 4-5 Fe-M-LA/C觸媒之全電池測試 106 第五章 結論 109 參考文獻 112

[1] 黃鎮江,燃料電池, 台中:滄海書局,民97.02,第4-16頁。.
[2] https://en.wikipedia.org/wiki/Christian_Friedrich_Sch%C3%B6nbein.
[3] http://highscope.ch.ntu.edu.tw/wordpress/?p=5097.
[4] http://www.mt.com.pl/ogniwa-ogniwa-ogniwa.
[5] 李春正, 美國燃料電池新進展, 工安環保第五期, 2001.
[6] 林有銘, 氫氣燃料電池技術, 化工技術, 1999.
[7] 翁芳柏, 燃料電池簡介, 工安環保第五期, 2001.
[8] http://www.ch.ntu.edu.tw/~rsliu/molpdf-liu/Group05_Report.pdf.
[9] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Advances in Physical Chemistry, 2012 (2012) 17.
[10] http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_050811_fukuta.pdf.
[11] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
[12] K. Kinoshita, Electrochemical Oxygen Technology. New York: Jhon Wiley & Sons, (1992) 37.
[13] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochimica Acta, 44 (1998) 1317-1327.
[14] J.P. Hoare, The Electrochemistry of Oxygen. New York: John Wiley & Sons, (1968) 26-91.
[15] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 45 (2002) 117-229.
[16] B.E. Conway, Comprehensive Treatise of Electrochemistry. New York: Kluwer Acadwmic Pub, (1983) 26-91.
[17] E. Antolini, T. Lopes, E.R. Gonzalez, An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. Journal of Alloys and Compounds, 461 (2008) 253-262.
[18] H. Yang, W. Vogel, C. Lamy, N. Alonso-Vante, Structure and Electrocatalytic Activity of Carbon-Supported Pt−Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry B, 108 (2004) 11024-11034.
[19] A. Sarkar, A. Vadivel Murugan, A. Manthiram, Rapid Microwave-Assisted Solvothermal Synthesis of Methanol Tolerant Pt–Pd–Co Nanoalloy Electrocatalysts. Fuel Cells, 10 (2010) 375-383.
[20] B.J. Hwang, S.M.S. Kumar, C.-H. Chen, Monalisa, M.-Y. Cheng, D.-G. Liu, J.-F. Lee, An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 111 (2007) 15267-15276.
[21] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts. The Journal of Physical Chemistry B, 106 (2002) 4181-4191.
[22] H. Yang, N. Alonso-Vante, J.-M. Léger, C. Lamy, Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt−Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. The Journal of Physical Chemistry B, 108 (2004) 1938-1947.
[23] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 4 (2011) 3167-3192.
[24] J. R, A New Fuel Cell Cathode Catalyst. Nature, (1964) 1212-1213.
[25] M. Lefe`vre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science, 324 (2009) 71-74.
[26] H. Liu, C. Song, Y. Tang, J. Zhang, J. Zhang, High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochimica Acta, 52 (2007) 4532-4538.
[27] J.P. Randin, Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochimica Acta, 19 (1974) 83-85.
[28] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta, 53 (2008) 4937-4951.
[29] J.H. Zagal, Metallophthalocyanines as catalysts in electrochemical reactions. Coordination Chemistry Reviews, 119 (1992) 89-136.
[30] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, J. Shen, A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 165 (2007) 739-756.
[31] X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang, J. Cheng, Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition, 15 (2009) 53-56.
[32] Y. Wei, C. Shengzhou, L. Weiming, Oxygen reduction on non-noble metal electrocatalysts supported on N-doped carbon aerogel composites. International Journal of Hydrogen Energy, 37 (2012) 942-945.
[33] H.-C. Huang, C.-H. Wang, I. Shown, S.-T. Chang, H.-C. Hsu, H.-Y. Du, L.-C. Chen, K.-H. Chen, High-performance pyrolyzed iron corrole as a potential non-precious metal catalyst for PEMFCs. Journal of Materials Chemistry A, 1 (2013) 14692-14699.
[34] H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochemistry Communications, 12 (2010) 1792-1795.
[35] G. Liu, X. Li, P. Ganesan, B.N. Popov, Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta, 55 (2010) 2853-2858.
[36] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5 (2011) 4350-4358.
[37] S. Inamdar, H.-S. Choi, P. Wang, M.Y. Song, J.-S. Yu, Sulfur-containing carbon by flame synthesis as efficient metal-free electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 30 (2013) 9-12.
[38] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.a. Chen, S. Huang, Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano, 6 (2012) 205-211.
[39] L. Zhang, Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. The Journal of Physical Chemistry C, 115 (2011) 11170-11176.
[40] Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang, Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 5 (2013) 3283-3288.
[41] L. Xu, G. Pan, X. Liang, G. Luo, C. Zou, G. Chen, Synthesis of dual-doped non-precious metal electrocatalysts and their electrocatalytic activity for oxygen reduction reaction. Journal of Energy Chemistry, 23 (2014) 498-506.
[42] Z. Guo, C. Jiang, C. Teng, G. Ren, Y. Zhu, L. Jiang, Sulfur, trace nitrogen and iron codoped hierarchically porous carbon foams as synergistic catalysts for oxygen reduction reaction. ACS Applied Materials and Interfaces, 6 (2014) 21454-21460.
[43] V. Nallathambi, N. Leonard, R. Kothandaraman, S.C. Barton, Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts. Electrochemical and Solid-State Letters, 14 (2011) B55-B58.
[44] (國家同步輻射中心) http://www.nsrrc.gov.tw/chinese/lightsource.aspx.
[45] S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. Journal of Applied Electrochemistry, 19 (1989) 19-27.
[46] L.T. Weng, P. Bertrand, G. Lalande, J.P. Dodelet, Characterization of electrocatalysts for oxygen reduction by TOF-SIMS. John Wiley & Sons (Chichester), (1994) 442-445.
[47] R. N, M. S, Electrocatalysis of oxygen reduction on non-precious metallic centers at high pH environments. ECS Trans, 33 (2010) 1777–1785.
[48] L.T. Weng, P. Bertrand, G. Lalande, D. Guay, J.P. Dodelet, Surface characterization by time-of-flight SIMS of a catalyst for oxygen electroreduction: pyrolyzed cobalt phthalocyanine-on-carbon black. Applied Surface Science, 84 (1995) 9-21.
[49] G. Lalande, G. Faubert, R. Côté, D. Guay, J.P. Dodelet, L.T. Weng, P. Bertrand, Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. Journal of Power Sources, 61 (1996) 227-237.
[50] G. Faubert, G. Lalande, R. Côté, D. Guay, J.P. Dodelet, L.T. Weng, P. Bertrand, G. Dénès, Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 41 (1996) 1689-1701.
[51] G. Lalande, R. Côté, G. Tamizhmani, D. Guay, J.P. Dodelet, L. Dignard-Bailey, L.T. Weng, P. Bertrand, Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 40 (1995) 2635-2646.
[52] K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda, H. Ishida, Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: Simple preparation from cation exchanged graphite oxide. Carbon, 49 (2011) 1118-1125.
[53] C.-W. Su, L.-X. Zhou, J.-M. Li, M.-C. Ye, J.-M. Guo, Oxidation of Fe3N for a High-Energy-Density Anode in Lithium Ion Batteries. International Journal of Electrochemical Science, 9 (2014) 7935-7947.
[54] J. Qian, Z. Peng, D. Wu, X. Fu, FeWO4/FeS core/shell nanorods fabricated by thermal evaporation. Materials Letters, 122 (2014) 86-89.
[55] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy and Environmental Science, 5 (2012) 7936-7942.
[56] Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-p. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2 (2013) 241-248.
[57] C.-H. Wang, C.-T. Wang, H.-C. Huang, S.-T. Chang, F.-Y. Liao, High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Adv, 3 (2013) 15375-15381.
[58] J. Xu, G. Dong, C. Jin, M. Huang, L. Guan, Sulfur and Nitrogen Co-Doped, Few-Layered Graphene Oxide as a Highly Efficient Electrocatalyst for the Oxygen-Reduction Reaction. ChemSusChem, 6 (2013) 493-499.
[59] Y. Li, M. Li, L. Jiang, L. Lin, L. Cui, X. He, Advanced oxygen reduction reaction catalyst based on nitrogen and sulfur co-doped graphene in alkaline medium. Phys. Chem. Chem. Phys, 16 (2014) 23196-23205.
[60] C. Han, X. Bo, Y. Zhang, M. Li, L. Guo, One-pot synthesis of nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution. Journal of Power Sources, 272 (2014) 267-276.
[61] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. Angewandte Chemie International Edition, 51 (2012) 11496-11500.
[62] H. Wang, X. Bo, Y. Zhang, L. Guo, Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. Electrochimica Acta, 108 (2013) 404-411.
[63] S.-H. Liu, J.-R. Wu, F.-S. Zheng, J.-M. Guo, Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts. (2015).
[64] S.-H. Liu, J.-R. Wu, C.-J. Pan, B.-J. Hwang, Synthesis and characterization of carbon incorporated Fe–N/carbons for methanol-tolerant oxygen reduction reaction of polymer electrolyte fuel cells. Journal of Power Sources, 250 (2014) 279-285.
[65] C.-W. Tsai, H.M. Chen, R.-S. Liu, K. Asakura, L. Zhang, J. Zhang, M.-Y. Lo, Y.-M. Peng, Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures. Electrochimica Acta, 56 (2011) 8734-8738.
[66] S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon, 50 (2012) 3210-3228.
[67] J.-e. Park, Y.J. Jang, Y.J. Kim, M.-s. Song, S. Yoon, D.H. Kim, S.-J. Kim, Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Physical Chemistry Chemical Physics, 16 (2014) 103-109.
[68] R. Wang, T. Zhou, H. Li, H. Wang, H. Feng, J. Goh, S. Ji, Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction. Journal of Power Sources, 261 (2014) 238-244.
[69] Z. Luo, T. Yu, Z. Ni, S. Lim, H. Hu, J. Shang, L. Liu, Z. Shen, J. Lin, Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy. Journal of Physical Chemistry C, 115 (2011) 1422-1427.
[70] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 332 (2011) 443-447.
[71] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat Commun, 6 (2015).
[72] Y. Peng, L. Cui, S. Yang, J. Fu, L. Zheng, Y. Liao, K. Li, X. Zuo, D. Xia, Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory. Electrochimica Acta, 154 (2015) 102-109.
[73] S.-H. Liu, J.-R. Wu, Spectroscopic studies of heat-treated FeNxCy/C involved in electrochemical oxygen reduction under acid media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139 (2015) 313-320.
[74] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy & Environmental Science, 5 (2012) 5305-5314.
[75] C. You, S. Liao, X. Qiao, X. Zeng, F. Liu, R. Zheng, H. Song, J. Zeng, Y. Li, Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 12240-12246.
[76] D.-W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie International Edition, 47 (2008) 373-376.

無法下載圖示 全文公開日期 2020/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE