簡易檢索 / 詳目顯示

研究生: 侯詠軒
Yong-Xuan Hou
論文名稱: 高比表面積介孔二氧化矽球體表面負載金屬氧化物及抗菌性能
Synthesis, characterization and antibacterial assessment of high surface area mesoporous silica sphere and its metal oxide-decorated nanocomposites
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 191
中文關鍵詞: 介孔洞二氧化矽球體溶膠-凝膠法奈米複合材料光觸媒抗菌
外文關鍵詞: Mesoporous silica sphere, Sol-Gel method, Nanocomposites, Photocatalyst antibacterial
相關次數: 點閱:546下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由溶膠-凝膠法,以溴化十六烷基三甲銨(CTAB)界面活性劑做為主要模板,四乙氧基矽烷(TEOS)作為矽源,再加入第二/第三種高分子材料或採用鐵氰化鉀為蝕刻劑進行蝕刻處理,分別於水相或油水混合相中,來製備具均一微/介孔洞二氧化矽球體。
藉由調整第二/第三種高分子含量可製得均一微/介孔洞二氧化矽球體,其球徑範圍從290 nm至613 nm、孔徑由1.86 nm 到4.10 nm、整體孔洞體積0.572 cm^3/g ~ 1.02 cm^3/g,而其比表面積介於865 m^2/g ~ 1268 m^2/g。透過鐵氰化鉀進行蝕刻,能使原本孔徑1.86 nm擴大至3.08 nm與孔徑3.82 nm擴孔至4.60 nm,且球體外觀並沒因此有變形現象。
當反應溫度從室溫提升至75 ℃,介孔洞二氧化矽球體球徑155 ± 22 nm,外觀仍維持球狀,但是平均孔徑由3.82 nm擴大至8.62 nm且整體孔徑體積由1.01 cm^3/g增加至2.2 cm^3/g,其比表面積由942 m^2/g變為1021 m^2/g。
此外本研究又以自製高活性之高比表面積介孔洞二氧化矽球體為載體,透過化學合成法將氧化銀、氧化亞銅、氧化鎳及二氧化鈰均勻沉積於介孔洞二氧化矽球體上,製得金屬氧化物/介孔洞二氧化矽複合顆粒。然後利用自製金屬氧化物/介孔洞二氧化矽複合顆粒進行抗菌能力測試,菌種選用革蘭氏陽性菌-金黃色葡萄球菌(S.aureus),起始菌液濃度為1 × 10^8 CFU/mL,分別於暗室及20瓦LED光源下進行抗菌試驗,其中氧化銀/介孔洞二氧化矽複合顆粒與氧化亞銅/介孔洞二氧化矽複合顆粒之抗菌能力伯仲之間,無論暗室與亮室下,兩者於歷經一小時後,殺菌率逼近百分之百。而從抗菌試驗中,複合顆粒之抗菌能力皆優於純金屬氧化物,這也證明我們自製載體高活性與高比表面積的特性,幫助金屬氧化物均勻分散於介孔洞二氧化矽球體上,而使金屬氧化物粒子達到奈米化,使其擁有奈米材料的物理效應產生。
利用自製高活性之高比表面積之介孔洞二氧化矽球體做為吸附劑,以亞甲基藍染料為吸附質,進行吸附試驗瞭解其吸附能力,最後測得其飽和吸附量達50.25 mg/g。


In this research, mesoporous silica spheres with uniform size were successfully prepare by sol-gel method. The system consists of cetyltrimethylammonium bromide (CTAB) surfactant as a main template, tetraethyl orthosilicate (TEOS) as the silicon precursor, and different kinds of polymers as the second/third polymer in aqueous-phase or oil-in-water phase to synthesis mesoporous silica sphere. By using potassium hexacyanoferrate as ethching agent, mesoporous silica spheres were etched to extend the pore size.
By simply changing the amount of second/third polymers in the system, mesoporous silica spheres had the diameter of 290 ~ 613 nm, pore size of 1.86 ~ 4.10 nm, total pore volume of 0.572 – 1.02 cm^3/g, and surface area of 865 ~1286 m^2/g.
The potassium hexacyanoferrate was used to etch mesoporous silica sphere. After etching, original pore sizes of 1.86 nm and 3.82 nm were extended to 3.08 nm and 4.60 nm, respectively and the silica sphere kept its shape.
When reaction temperature was increased from room temperature to 75 ℃, mesoporous silica sphere diameter about 155 ± 22 nm and remained spherical. However, the average pore size extended from 3.82 to 8.62 nm, total pore volume increased from 1.01 to 2.2 cm^3/g, and specific surface area up to 1021 m^2/g.
In addition, four kinds of metal oxide semiconductor nanoparticles such as silver(I) oxide、copper(I) oxide、nickel(II) oxide, and cerium(Ⅳ) oxide were uniformly deposited on mesoporous silica spheres with high specific surface area through chemical synthesis method for the purpose of antibacterial application.
We used the metal oxide/silica composite spheres to test antibacterial effect. The chosen strains were gram-positive type bacteria - Staphylococcus aureus (S.aureus). The initial bacterial concentration of 1 × 10^8 CFU/mL was prepared for antibacterial test in a dark room and in the 20-watt LED light condition. The data showed that both silver(I) oxide/silica and copper(I) oxide/silica composite spheres had performed the excellent antibacterial activity to completely sterilize bacteria in one hour no matter in the dark or under the 20 W-LED illumination.
Owing to their large and accessible pores and high surface area, the mesoporous silica sphere exhibited excellent performance in adsorption of methylene blue dye with a maximum adsorption capacity of 50.25 mg/g.

誌謝 摘要 Abstract 目錄 圖目錄 表目錄 Chapter 1.緒論 1-1.前言 1-2.研究動機 Chapter 2.基礎特性與理論 2-1.奈米材料 2-2.奈米材料的物理效應 2-3.奈米材料製備方法 2-3-1.物理方法(Physical Method) 2-3-2.化學方法(Chemical Method) 2-4.溶膠-凝膠法之介紹 2-4-1.溶膠-凝膠定義 2-4-2.溶膠-凝膠法反應機制 2-4-3.溶膠-凝膠法反應變因及影響 2-5.介孔材料簡介 2-5-1.合成方法與機制 2-5-2.結構的控制 2-6.吸附原理 2-6-1.吸附平衡 2-6-2.BET(Brunauor,Emmett,and Teller)多層氣體吸附法 2-6-3.等溫吸附曲線 2-6-4.遲滯曲線的分類 2-7.界面活性劑概述 2-7-1.界面活性劑結構 2-7-2.界面活性劑的分類 2-8.抗菌機制 Chapter 3.文獻回顧 3-1-1.單一分散性之二氧化矽顆粒 3-1-2.多種方法製備多孔二氧化矽顆粒 3-1-3.多孔二氧化矽球體之應用 Chapter 4.實驗方法 4-1.實驗藥品 4-2.部分藥品之結構圖 4-3.實驗設備 4-4.實驗流程 4-4-1.於水相中製備微/介孔洞二氧化矽球體 4-4-2.於油水混合相中製備介孔洞二氧化矽球體 4-4-3.以蝕刻法製備介孔洞二氧化矽球體 4-4-4.金屬氧化物/介孔洞二氧化矽複合顆粒之合成 4-4-5.抗菌試驗 4-4-6.吸附性能試驗 4-5.材料特性分析儀器介紹 4-5-1.表面形貌分析 4-5-2.結構分析 4-5-3.熱分析 4-5-4.光學分析 Chapter 5.結果與討論 5-1.於水相中製備微/介孔洞二氧化矽球體 5-2.於油水混合相中製備介孔洞二氧化矽球體 5-2-1.於油水混合相中,以PEG-400或P-123當作第二種高分子製備介孔洞二氧化矽球體 5-2-2.於油水混合相中,以PEG-400當作第二種高分子及P-123當作第三種高分子製備介孔洞二氧化矽球體 5-2-3.於油水混合相中,藉升溫或蝕刻處理使孔洞擴大 5-2-4.FTIR、TGA、XRD分析結果 5-3.金屬氧化物/介孔洞二氧化矽複合顆粒. 5-3-1.氧化銀/介孔洞二氧化矽複合顆粒 5-3-2.氧化亞銅、氧化鎳、二氧化鈰/介孔洞二氧化矽複合顆粒 5-3-3.金屬氧化物 5-4.抗菌能力之探討 5-4-1.氧化銀/介孔洞二氧化矽複合顆粒抗菌試驗 5-4-2.氧化亞銅、氧化鎳、二氧化鈰/介孔洞二氧化矽複合顆粒之抗菌試驗 5-4-3.金屬氧化物抗菌試驗 5-5.吸附性能評估 Chapter 6.結論 參考文獻

[1] 徐國財、張立德,奈米複合材料,五南圖書出版股份有限公司,2003.
[2] 馬遠榮,低維奈米材料,科學發展月刊,382 (2004.10) 72-75.
[3] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕,奈米科技導論,全華圖書股份有限公司,2008.
[4] 馬振基,奈米材料科技原理與應用,全華圖書股份有限公司,2012.
[5] N. Toshima, and T. Yonezawa, Bimetallic nanoparticles-novel materials for chemical and physical applications. New Journal of Chemistry, 22 (1998) 1179-1201.
[6] R. Roy, Gel Route to Homogeneous Glass Preparation. Journal of the American Ceramic Society, 52 (1969) 344-344.
[7] 蔡金津,奈米顆粒及薄膜之「溶膠-凝膠技術」,化工資訊月刊,15 (2001.11) 16-21.
[8] G. H. Bogush, and C. F. Zukoski Iv, Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. Journal of Colloid and Interface Science, 142 (1991) 1-18.
[9] L. L. Hench, and J. K. West, The sol-gel process. Chemical Reviews, 90 (1990) 33-72.
[10] C. J. Brinker, K. D. Keefer, D. W. Schaefer, and C. S. Ashley, Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48 (1982) 47-64.
[11] K. Osseo-Asare, and F. J. Arriagada, Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces, 50 (1990) 321-339.
[12] F. J. Arriagada, and K. Osseo-Asare, Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration. Journal of Colloid and Interface Science, 211 (1999) 210-220.
[13] I. Strawbridge, A. F. Craievich, and P. F. James, The effect of the H2O/TEOS ratio on the structure of gels derived by the acid catalysed hydrolysis of tetraethoxysilane. Journal of Non-Crystalline Solids, 72 (1985) 139-157.
[14] B. E. Yoldas, Hydrolytic polycondensation of alkoxysilanes and modification of polymerization reactions. Journal of Polymer Science Part A: Polymer Chemistry, 24 (1986) 3475-3490.
[15] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature, 359 (1992) 710-712.
[16] P. Selvam, S. K. Bhatia, and C. G. Sonwane, Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 40 (2001) 3237-3261.
[17] E. Dündar-Tekkaya, and Y. Yürüm, Mesoporous MCM-41 material for hydrogen storage: A short review. International Journal of Hydrogen Energy, 41 (2016) 9789-9795.
[18] 黃昱源、吳嘉文,無用之用的奈米孔洞材料,科學發展月刊,513 (2015.09) 16-21.
[19] S. H. Wu, C. Y. Mou, and H. P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42 (2013) 3862-3875.
[20] Z. A. ALOthman, A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5 (2012) 2874-2902.
[21] I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, and V. S. Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60 (2008) 1278-1288.
[22] P. Schneider, Adsorption isotherms of microporous-mesoporous solids revisited. Applied Catalysis A: General, 129 (1995) 157-165.
[23] M. D. Donohue, and G. L. Aranovich, Adsorption Hysteresis in Porous Solids. Journal of Colloid and Interface Science, 205 (1998) 121-130.
[24] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87 (2015) 1051-1069.
[25] S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60 (1938) 309-319.
[26] 廖明隆,界面化學與界面活性劑,鼎文書局股份有限公司,2003.
[27] 連大成,W/O型微乳液液滴之電荷分佈量測,國立中央大學化學工程研究所碩士學位論文,2001.
[28] W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26 (1968) 62-69.
[29] J. Yin, T. Deng, and G. Zhang, Preparation and size control of highly monodisperse vinyl functionalized silica spheres. Applied Surface Science, 258 (2012) 1910-1914.
[30] K. Ikari, K. Suzuki, and H. Imai, Structural Control of Mesoporous Silica Nanoparticles in a Binary Surfactant System. Langmuir, 22 (2006) 802-806.
[31] T. Nakamura, M. Mizutani, H. Nozaki, N. Suzuki, and K. Yano, Formation Mechanism for Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Core/Shell Particles. The Journal of Physical Chemistry C, 111 (2007) 1093-1100.
[32] M. Mizutani, Y. Yamada, T. Nakamura, and K. Yano, Anomalous Pore Expansion of Highly Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Porous Ferromagnetic Composite. Chemistry of Materials, 20 (2008) 4777-4782.
[33] F. Lu, S. H. Wu, Y. Hung, and C. Y. Mou, Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small, 5 (2009) 1408-1413.
[34] Q. Yu, J. Hui, P. Wang, and X. Wang, Anion-Exchange-Driven Disassembly of a SiO2/CTAB Composite Mesophase: the Formation of Hollow Mesoporous Silica Spheres. Inorganic Chemistry, 51 (2012) 9539-9543.
[35] Z. Teng, X. Su, Y. Zheng, J. Sun, G. Chen, C. Tian, J. Wang, L. Hao, Y. Zhao, and G. Lu, Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transformation Approach. Chemistry of Materials, 25 (2012) 98-105.
[36] Y. J. Yu, J. L. Xing, J. L. Pang, S. H. Jiang, K. F. Lam, T. Q. Yang, Q. S. Xue, K. Zhang, and P. Wu, Facile Synthesis of Size Controllable Dendritic Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 6 (2014) 22655-22665.
[37] X. Wang, Y. Zhang, W. Luo, A. A. lzatahry, X. Cheng, A. Alghamdi, A. M. Abdullah, and D. Zhao, Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method. Chemistry of Materials, 28 (2016) 2356-2362.
[38] Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, and Y. S. Kang, Synthesis and Characterization of Antibacterial Ag−SiO2 Nanocomposite. The Journal of Physical Chemistry C, 111 (2007) 3629-3635.
[39] Y. Tian, J. Qi, W. Zhang, Q. Cai, and X. Jiang, Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Applied Materials & Interfaces, 6 (2014) 12038-12045.
[40] Y. Gao, Q. Dong, S. Lan, Q. Cai, O. Simalou, S. Zhang, G. Gao, H. Chokto, and A. Dong, Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications. ACS Applied Materials & Interfaces, 7 (2015) 10022-10033.
[41] P. Tan, Y. H. Li, X. Q. Liu, Y. Jiang, and L. B. Sun, Core–Shell AgCl@SiO2 Nanoparticles: Ag(I)-Based Antibacterial Materials with Enhanced Stability. ACS Sustainable Chemistry & Engineering, 4 (2016) 3268-3275.
[42] J. Kobler, K. Möller, and T. Bein, Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles. ACS Nano, 2 (2008) 791-799.
[43] B. Ma, Y. Huang, C. Zhu, C. Chen, X. Chen, M. Fan, and D. Sun, Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. Materials Science and Engineering: C, 62 (2016) 656-661.
[44] D. M. Tobaldi, C. Piccirillo, R. C. Pullar, A. F. Gualtieri, M. P. Seabra, P. M. L. Castro, and J. A. Labrincha, Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst. The Journal of Physical Chemistry C, 118 (2014) 4751-4766.
[45] X. H. Liu, B. B. Ding, Y. Zhu, T. Y. Wang, B. C. Chen, Y. Shao, M. Q. Chen, P. Zheng, Y. L. Zhao, and H. S. Qian, Facile synthesis of the SiO2/Au hybrid microspheres for excellent catalytic performance. Journal of Materials Research, 29 (2014) 1417-1423.
[46] C. S. Wu, and H. T. Liao, Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol–gel method. Journal of Applied Polymer Science, 121 (2011) 2193-2201.
[47] J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, and J. Chang, Crystallography Facet-Dependent Antibacterial Activity: The Case of Cu2O. Industrial & Engineering Chemistry Research, 50 (2011) 10366-10369.
[48] M. J. Kim, Y. S. Cho, S. H. Park, and Y. D. Huh, Facile Synthesis and Fine Morphological Tuning of Ag2O. Crystal Growth & Design, 12 (2012) 4180-4185.
[49] M. J. Hajipour, K. M. Fromm, A. A shkarran, D. J. de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, Antibacterial properties of nanoparticles. Trends in Biotechnology, 30 (2012) 499-511.
[50] D. Shen, J. Yang, X. Li, L. Zhou, R. Zhang, W. Li, L. Chen, R. Wang, F. Zhang, and D. Zhao, Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 14 (2014) 923-932.
[51] S. H. Wu, Y. Hung, and C. Y. Mou, Compartmentalized Hollow Silica Nanospheres Templated from Nanoemulsions. Chemistry of Materials, 25 (2013) 352-364.
[52] X. Du, and J. He, Hierarchically Mesoporous Silica Nanoparticles: Extraction, Amino-Functionalization, and Their Multipurpose Potentials. Langmuir, 27 (2011) 2972-2979.
[53] M. Huang, L. Li, and S. Zheng, Mesoporous silica with block copolymer templates: Modulation of porosity via block copolymer reaction with silica. Microporous and Mesoporous Materials, 225 (2016) 9-25.
[54] Z. Gao, and I. Zharov, Large Pore Mesoporous Silica Nanoparticles by Templating with a Nonsurfactant Molecule, Tannic Acid. Chemistry of Materials, 26 (2014) 2030-2037.
[55] B. Reidy, A. Haase , A. Luch, K. A. Dawson, and I. Lynch, Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials, 6 (2013) 2295-2350.
[56] Q. Zhang, J. Ye, P. Tian, X. Lu, Y. Lin, Q. Zhao, and G. Ning, Ag/TiO2 and Ag/SiO2 composite spheres: synthesis, characterization and antibacterial properties. RSC Advances, 3 (2013) 9739-9744.
[57] E. Yamamoto, M. Kitahara, T. Tsumura, and K. Kuroda, Preparation of Size-Controlled Monodisperse Colloidal Mesoporous Silica Nanoparticles and Fabrication of Colloidal Crystals. Chemistry of Materials, 26 (2014) 2927-2933.
[58] J. M. Wu, and W.T. Kao, Heterojunction Nanowires of AgxZn1–xO–ZnO Photocatalytic and Antibacterial Activities under Visible-Light and Dark Conditions. The Journal of Physical Chemistry C, 119 (2015) 1433-1441.
[59] L. Q. Feng, J. Wu, G. Q. Chen, F. Z. Cui., T. N. Kim, and J. Q. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52 (2000) 662-668.
[60] V. V. T. Padil, and M. Cernik, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8 (2013) 889-898.
[61] A. Ananth, S. Dharaneedharan, M. S. Heo, and Y. S. Mok, Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chemical Engineering Journal, 262 (2015) 179-188.

QR CODE