簡易檢索 / 詳目顯示

研究生: 林祐瑄
Yu-Hsuan Lin
論文名稱: 永磁式同步馬達及機械負載之功率硬體模擬器開發
Development of Power Hardware-in-the-loop for Permanent-magnet Synchronous Motor and Mechanical Load
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 146
中文關鍵詞: 永磁式同步馬達機械負載信號硬體模擬器功率硬體模 擬器
外文關鍵詞: permanent magnet synchronous motor, mechanical load, signal hardware-in-the-loop, power hardware-in-the-loop
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在開發三相永磁式同步馬達及機械負載之功率硬體模擬器,以便測試不同參數的永磁式同步馬達,解決傳統馬達及機械負載變更馬達參數不易的問題。信號硬體模擬器的硬體設備採用國家儀器的PXI系統搭配FPGA介面卡,並將Simulink所建立的永磁式同步馬達及機械負載模型軟體載入此介面卡的FPGA,以完成系統整合。本系統具有機械轉矩或轉速設定,以供待測永磁式同步馬達驅動器測試使用。在角位置及角速度的偵測方面,完成解角器模擬信號,提供待測馬達驅動器的角速度及角位置回授使用。本文的功率硬體模擬器將整合信號硬體模擬器、電壓及電流回授電路、耦合電感,以及致茂電子的交流電源供給器編號61800-100。為了提高電流響應,本系統採用電流閉迴路控制及信號硬體模擬器的電壓補償以控制交流電源供應器的電壓。
    本文已完成功率硬體模擬器實體製作,並搭配具有轉速及電流閉迴路控制的待測永磁式馬達驅動器,在馬達的轉速為1200rpm及負載轉矩或設定的轉矩為4N-m條件實測。馬達操作於電動機模式實測的a相電流峰值約為6.30A,而Simulink的模擬相電流峰值約為6.20A,實測與模擬的電流誤差約為0.1A。在發電機模式a相電流峰值約為6.17A,Simulink的模擬相電流峰值約為6.02A,實測與模擬的電流誤差約為0.15A;本文實測與模擬相接近,驗證本文系統可行性。


    This thesis aims to development of power hardware in the loop (PHIL) for three-phase permanent-magnet synchronous motor (PMSM) and mechanical load. In order to test the PMSM with different parameters, it solves the problem that the traditional motor and mechanical load are not easy to change the motor parameters. The signal hardware in the loop (SHIL) adopted PXI system of National Instruments and FPGA interface card, and PMSM model created by Simulink is loaded to FPGA adapter to complete the system. The system in torque or speed mode can be used for device under test (DUT) testing. In the simulation of rotor position and angular velocity, the virtual resolver signal is implemented to provide resolver signal to DUT. The PHIL is combined of SHIL, voltage sensor, current sensor, coupling inductor and AC power source, 61800-100 from Chroma Electronics. In order to enhance current response, current closed-loop control and voltage compensation are adopted to control of AC power source voltage command.
    The experiment of the PHIL with DUT in speed and current closed-loop control is accomplished. When the speed is 1200rpm and the load torque or the set torque is 4N-m. The peak value of phase current is 6.30A in motor mode and the peak value of phase current is about 6.20A, and the displacement error of current between experiment and simulation is about 0.1A. The peak value of phase current in generator mode, the experiment and simulation are about 6.17A and 6.02A, current error about 0.15A. The closed results between experiment and simulation verify the feasibility of the system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VIII 符號索引 XV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 2 1-2-1 動力計測試平台 2 1-2-2 即時信號硬體模擬器 3 1-2-3 功率硬體模擬器 3 1-2-4 角位置及角速度的解角器信號模擬 5 1-3 系統架構及本文特色 6 1-3-1 傳統的馬達驅動器之馬達及機械負載測試平台 6 1-3-2 功率硬體模擬器 7 1-3-3 功率硬體模擬器之功率潮流 8 1-3-4 功率硬體模擬器的控制 8 1-3-5 本文特色 9 1-4 本文大綱 10 第二章 永磁式同步馬達及機械負載的模式 11 2-1 前言 11 2-2 永磁式同步馬達及機械負載的連續域模式 11 2-2-1 永磁式同步馬達abc軸的電機模式[37] 11 2-2-2 永磁式同步馬達qd軸的電機數學模式[37] 12 2-3 永磁式同步馬達及負載在連續域的模擬規劃 16 2-4 永磁式同步馬達及機械負載的離散化模式 19 2-5 結語 21 第三章 永磁式同步馬達及機械負載的硬體模擬器 22 3-1 前言 22 3-2 信號硬體模擬器的架構 22 3-3 信號硬體模擬器的規劃 24 3-4 功率硬體模擬器的架構及模式 28 3-5 功率硬體模擬器模式的模擬規劃 35 3-6 結語 35 第四章 實體製作及實測 36 4-1 前言 36 4-2 信號硬體模擬器的實體製作 36 4-3 永磁式同步馬達及負載的信號硬體模擬器實測 45 4-4 本文功率硬體模擬器的實體製作 54 4-5 功率硬體模擬器模式在Simulink的模擬 64 4-6 本文功率硬體模擬器實測 81 4-7 硬體模擬器比較 90 4-8 結語 91 第五章 結論與建議 92 5-1 結論 92 5-2 建議 93 參考文獻 94 附錄A 待測馬達參數 100 附錄B 待測馬達驅動器控制策略 101 B-1 待測馬達驅動器的轉矩/電流閉迴路控制策略 101 B-2 待測馬達驅動器之轉速及電流閉迴路控制策略 103 附錄C 連續域(s域)與離散化(z域)的轉換 104 附錄D 模擬程式 105 D-1 永磁式同步馬達及負載的模型 105 D-2 永磁式同步馬達及負載的信號硬體模擬器模型 107 D-3 永磁式同步馬達及負載的功率硬體模擬器模型 109 附錄E 永磁式同步馬達及負載在s域的模擬結果 111

    [1]A. H. Kadam, R. Menon, and S. S. Williamson, "Traction inverter performance testing using mathematical and real-time controller-in-the-loop permanent magnet synchronous motor emulator," IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6651-6656, IEEE, 2016.
    [2]C. Dufour, S. Abourida, J. Bélanger, and V. Lapointe, "Real-time simulation of permanent magnet motor drive on FPGA chip for high-bandwidth controller tests and validation," IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, pp. 4581-4586, 2006.
    [3]A. Monti, E. Santi, R. A. Dougal, and M. Riva, "Rapid prototyping of digital controls for power electronics," IEEE Transactions on power electronics, vol. 18, No. 3, pp. 915-923, 2003.
    [4]P. Terwiesch, T. Keller, and E. Scheiben, "Rail vehicle control system integration testing using digital hardware-in-the-loop simulation," IEEE transactions on control systems technology, vol. 7, No. 3, pp. 352-362, 1999.
    [5]C. Dufour and J. Bélanger, "A PC-based real-time parallel simulator of electric systems and drives," Parallel Computing in Electrical Engineering, International Conference on, 2004, pp. 105-113: IEEE, 2004.
    [6]A. Monti, S. D'arco, and A. Deshmukh, "A new architecture for low cost power hardware in the loop testing of power electronics equipments," 2008 IEEE International Symposium on Industrial Electronics, pp. 2183-2188, 2008.
    [7]M. Matar and R. Iravani, "Massively parallel implementation of AC machine models for FPGA-based real-time simulation of electromagnetic transients," IEEE transactions on power delivery, vol. 26, no. 2, pp. 830-840, 2010.
    [8]L. Herrera and J. Wang, "FPGA-based detailed real-time simulation of power converters and electric machines for EV HIL applications," 2013 IEEE energy conversion congress and exposition, vol. 51, no. 2, pp. 1702-1712, 2014.
    [9]A. Bouscayrol, "Different types of hardware-in-the-loop simulation for electric drives," 2008 IEEE International Symposium on Industrial Electronics, pp. 2146-2151, 2008.
    [10]S. Lentijo, S. D'Arco, and A. J. I. T. o. I. E. Monti, "Comparing the dynamic performances of power hardware-in-the-loop interfaces," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1195-1207, 2009.
    [11]陳冠宇,“具雙向功率轉換之單相市電併網型永磁式同步電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零八年。
    [12]李建霖,“具能量回收之動力計用的雙向三相感應電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零六年。
    [13]陳立洋,“具雙向功率轉換之市電併網型三相永磁式 同步電動機驅動器設計”,國立臺灣科技大學電機工程學系碩士論文,民國一百零七年。
    [14]A. Monti, S. D'Arco, Y. Work, and A. Lentini, "A virtual testing facility for elevator and escalator systems," 2007 IEEE Power Electronics Specialists Conference, pp. 820-825, 2007.
    [15]R. M. Kennel, T. Boller, and J. Holtz, "Replacement of electrical (load) drives by a hardware-in-the-loop system," International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, pp. 17-25, 2011.
    [16]A. Schmitt, J. Richter, M. Braun, and M. Doppelbauer, "power hardware-in-the-Loop emulation of permanent magnet synchronous machines with nonlinear magnetics-concept & verification," PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, 2016.
    [17]A. Schmitt, M. Gommeringer, C. Rollbuhler, P. Pomnitz, and M. Braun, "A novel modulation scheme for a modular multiphase multilevel converter in a power hardware-in-the-loop emulation system," IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 001276-001281, 2015.
    [18]A. Schmitt, J. Richter, M. Gommeringer, T. Wersal, and M. Braun, "A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics," 8th IET international conference on power electronics, machines and drives, 2016.
    [19]W. Ren, M. Steurer, and T. L. J. I. T. o. I. A. Baldwin, "Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms," IEEE transactions of industry applications, vol. 44, no. 4, pp. 1286-1294, 2008.
    [20]S. Grubic, B. Amlang, W. Schumacher, and A. J. I. T. o. I. E. Wenzel, "A high-performance electronic hardware-in-the-loop drive–load simulation using a linear inverter (LinVerter)," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1208-1216, 2009.
    [21]S. Liebig, A. Schmitt, and H. Hammerer, "High-dynamic high-power e-motor emulator for power electronic testing," PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-5, 2018.
    [22]A. Schmitt, J. Richter, U. Jurkewitz, and M. Braun, "FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems," IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3763-3769, 2014.
    [23]W. Ren, M. Steurer, and L. Qi, "Evaluating dynamic performance of modern electric drives via power-hardware-in-the-loop simulation," 2008 IEEE International Symposium on Industrial Electronics, pp. 2201-2206, 2008.
    [24]X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, "Design and implementation of a power-hardware-in-the-loop interface: a nonlinear load case study," Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., vol. 2, pp. 1332-1338, 2005.
    [25]M. Schnarrenberger, L. Stefanski, C. Rollbühler, D. Bräckle, and M. Braun, "A 50 kW power hardware-in-the-loop test bench for permanent magnet synchronous machines based on a modular multilevel converter," 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), pp. P. 1-P. 10, 2018.
    [26]C. Dufour, S. Cense, T. Yamada, R. Imamura, and J. Bélanger, "Fpga permanent magnet synchronous motor floating-point models with variable-dq and spatial harmonic finite-element analysis solvers," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), pp. LS6b. 2-1-LS6b. 2-10, 2012.
    [27]M. Novak, J. Novak, Z. Novak, J. Chysky, and O. Sivkov, "Efficiency mapping of a 100 kW PMSM for traction applications," 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 290-295, 2017.
    [28]J. Richter, P. Winzer, and M. Doppelbauer, "Einsatz virtueller prototypen bei der akausalen modellierung und simulation von permanenterregten synchronmaschinen," Internationaler ETG-Kongress 2013 (ETG-FB 139), 2013.
    [29]I. G. Park and S. I. Kim, "Modeling and analysis of multi-interphase transformers for connecting power converters in parallel," PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, vol. 2, pp. 1164-1170, 1997.
    [30]S. Baciu, S. Trabelsi, B. Amlang, and W. Schumacher, "Linverter a low-harmonic and high-bandwidth inverter based on a parallel multilevel structure," 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), vol. 5, pp. 3927-3931, 2004.
    [31]J. Richter, P. Bäuerle, T. Gemassmer, and M. Doppelbauer, "Transient trajectory control of permanent magnet synchronous machines with nonlinear magnetics," 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2345-2351, 2012.
    [32]L. Wang, J. Jatskevich, and H. Dommel, "Re-examination of synchronous machine modeling techniques for electromagnetic transient simulations," 2007 IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1221-1230, 2007.
    [33]S.-K. Lee, G.-H. Kang, J. Hur, and B.-W. Kim, "Design and experiment of 100kW interior permanent magnet machine for ship anti heeling system," 2012 IEEE Vehicle Power and Propulsion Conference, pp. 544-548, 2012.
    [34]A. Schmitt, M. Gommeringer, J. Kolb, M. Braun, ‘A high current, high frequency modular multiphase multilevel converter for power hardware-in-the-loop emulator,’ 2014 PCIM Europe, pp 1537-1544, 2014.
    [35]A. Schmitt, “Hochdynmische power hardware-in-the-loop emulation hoch ausgenutzter synchronmaschinen mit einem modularen-multiphasen-multilevel. umrichter”, 2017, KIT Scientific Publishing, Karlsruhe.
    [36]Analog Devices, AD2S1210 Datasheet.
    [37]C. M. Ong, “Dynamic simulations of electric machinery”, 1997, Prentice Hall PTR.
    [38]National Instruments, NI PXIe-7861 Specifications.
    [39]Chroma, Regenerative grid simulator model 61800 series Specifications.

    無法下載圖示 全文公開日期 2025/06/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE