簡易檢索 / 詳目顯示

研究生: 高靜君
Ching-Chun Kao
論文名稱: 以紫外光起始及大氣電漿聚合光固化材料並應用於生醫材料
Preparation of Photo-curable Polymers via UV Irradiation and Atmospheric Pressure Plasma Jet for Biomaterial Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
王勝仕
周秀慧
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 113
中文關鍵詞: 光固化材料紫外光起始法大氣電漿聚合法生物相容性電漿聚合薄膜
外文關鍵詞: UV irradiation, Atmospheric pressure plasma jet (APPJ), Photo-curable polymers, Biocompatibility, Low pressure plasma polymerization
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩部分,第一部分為將光固化材料應用於生醫材料,分別利用紫外光起始聚合法、以及大氣電漿聚合法製備各式樣本,並以不同的方法增加光固化材料之生物相容性。其中,對於紫外光起始聚合法所製備之光固化材料,利用兩種不同的方法進行表面改質:(1)以的浸泡方式將聚多巴胺 (polydopamine, PDA)修飾於光固化材料表面;(2)以氬氣形成之大氣電漿電子束 (atmospheric pressure argon plasma jet)處理光固化材料表面。此外,為了比較添加光起始劑對於聚合光固化材料時,對於生物相容性之影響,嘗試以大氣電漿取代光起始劑,作為活性物質提供者(如自由基等),以聚合光固化材料。第二部分利用吡 (pyrrole, Py)為前驅物,製備含有胺基之導電性高分子薄膜,並探討不同電漿參數以及後處理對於薄膜特性之影響。
    論文第一部分,是利用PDA修飾於五種不同的光固化材料表面:(i) AA、(ii) PSiO-IBOA、(iii) PSiO-EOEA、(iv) PE-EOEA、以及(v) PC-IBOA,並以L-929老鼠纖維母細胞培養於樣本表面,探討材料生物相容性。由LDH活性檢測法 (乳酸脫氫法, lactate dehydrogenase assay)分析結果顯示,五種光固化材料經過PDA修飾後,細胞密度除了在AA樣本之外,皆有上升的趨勢,特別是PSiO-EOEA在修飾PDA後,細胞密度相較於未修飾提升至142%,由於PSiO-EOEA經由修飾PDA前後之細胞密度,在五種材料中差異性最大,因此後續皆以PSiO-EOEA作為研究樣本。利用氬氣APPJ改質PSiO-EOEA,並藉由接觸角測量表面親疏水性,結果顯示在氬氣APPJ掃描3次 (PSiO-3N) (N: scan number)以及5次 (PSiO-5N)後,水接觸角由未經處理的101.8°分別下降至20.7°及12.6°,顯示經由氬氣電漿處理後可得到親水性之表面。此外,亦將PDA修飾於PSiO-5N之樣本表面 (PSiO-5N-PDA),並探討材料生物相容性,LDH結果顯示,PSiO-5N以及PSiO-5N-PDA之細胞密度與未改質之材料相比,分別提升至112%以及260%,結果指出,相較於材料表面之親疏水性,PDA之表面修飾能夠顯著的增加光固化材料的生物相容性。
    另一方面,為探討光起始劑對於材料生物相容性之影響,比較以紫外光起始聚合 (PSiO-UV)及大氣電漿聚合含有光起始劑(PSiO-APPJw/ PI)之樣本,以及利用大氣電漿聚合不含光起始劑 (PSiO-APPJw/o PI)之樣本,並以L¬-929老鼠纖維母細胞培養樣本一天及三天,探討其生物相容性。當細胞培養三天後,PSiO-UV、PSiO-APPJw/ PI以及PSiO-APPJw/o PI之細胞密度分別提升至355%、461%以及572%,結果指出,於PSiO-APPJw/o PI表面之細胞密度明顯高於含有光起始劑之樣本。
    論文的第二部分,是利用Py作為前驅物,製備電漿聚合聚吡咯薄膜 (plasma-polymerized polypyrrole, ppPPy),固定工作壓力為100 mTorr,分別改變施加功率及沉積時間,以探討電漿參數對薄膜特性之影響。由橢圓偏光儀量測薄膜厚度並計算沉積速率,結果顯示薄膜厚度會隨著沉積時間增加而呈線性上升,當施加功率由5 W增加至60 W時,沉積速率由7.99 nm/min增加至20.32 nm/min。水接觸角量測結果顯示,可於施加功率為10 W時,得到最低之水接觸為35.5°,而在施加功率為60 W時,得到之水接觸角為64.4°,在固定施加功率下,當沉積時間為30分鐘時,薄膜之水接觸角開始趨於定值,由結果得知,長時間沉積對於薄膜親疏水性無更顯著之影響。利用L-929老鼠纖維母細胞研究薄膜之生物相容性,並改變施加功率為10 W、40 W、及60 W,結果顯示於施加功率10 W及40 W下沉積之ppPPy薄膜,具有較好的生物相容性。另外,亦將碘摻雜於10 W及40 W下所製備之ppPPy,並以電化學方式分析其導電性質,結果顯示於10 W之ppPPy有較高的電流響應。統整以上分析結果,得知施加功率對薄膜性質有顯著之影響,並推測在低施加功率下能夠使高分子保有完整之結構,使薄膜在低施加功率下得到較親水且生物相容性較佳之性質。


    The polymerization reactions of photo-curable polymers are initiated by a UV irradiation method, which involves the utilizations of photo-initiator to interact with monomers or oligomers. In this thesis, the biocompatibility of the photo-curable polymers was adjusted by using different methods. This thesis is composed of two parts: (I) the photo-curable materials were polymerized through UV irradiation or atmospheric pressure plasma jet (APPJ) techniques. In addition, for the photo-curable polymers polymerized by UV irradiation, two different methods were used to enhance the biocompatibility: (i) surface modification using polydopamine (PDA), and (ii) by argon (Ar) plasma surface modification.
    The photo-curable precursor, PSiO-EOEA was polymerized by UV irradiation, and then modified with PDA or Ar plasma. For the Ar plasma treatments, PSiO-EOEA was scanned by APPJ for three or five times (PSiO-3N, PSiO-5N). The results showed that the surface wettability of PSiO-EOEA decreased from 101.8 ° to 20.7 ° and 12.6 ° after Ar plasma scanned for 3 and 5 times, respectively. In addition, PDA was coated on the surface of Ar plasma pretreated polymer (PSiO-5N-PDA) and the biocompatibility on the samples was investigated by lactate dehydrogenase (LDH) assay, based on cell culture of L-929 mouse fibroblasts on the samples. The results showed that the cell density on PSiO-5N and PSiO-5N-PDA increased to 112% and 260%, respectively. Therefore, it can be concluded that the PDA surface modification can significantly enhance the biocompatibility of PSiO-EOEA.
    On the other hand, it is indicated that several reactive oxygen species (ROS) and reactive nitrogen species (RNS) could be generated by APPJ, which has potential to achieve the polymerization of photo-curable materials without adding photoinitiators (PI). Therefore, this thesis also try to use APPJ in the absence PI to polymerize the photo-curable materials to avoid the toxicity of PI. In this study, APPJ-assisted polymerization without PI (PSiO-APPJw/o-PI) was compared with UV irradiation (PSiO-UV) and APPJ polymerization with PI (PSiO-APPJw/-PI). Furthermore, the effects of PI on the biocompatibility of L-929 mouse fibroblast cells were studied. The results showed that the cell density of L-929 fibroblasts cultured onto PSiO-UV, PSiO-APPJw/-PI, and PSiO-APPJw/o-PI became 355%, 461%, and 572% after culturing for 3 days, respectively. It is suggested that even low concentration of PI can affect the biocompatibility of photo-curable polymers.
    In the second part of this work, plasma-polymerized polypyrrole (ppPPy) thin films were prepared by a low-pressure plasma polymerization process. The effects of the applied power and deposition time on the characteristics of ppPPy thin films were studied. The film thickness and surface wettability were evaluated by ellipsometry and water contact angle measurements. The chemical composition and surface roughness were analyzed by ATR-FTIR and AFM, respectively. Furthermore, the biocompatibility and electrical conductivity of ppPPy films were studied with in vitro cell culture using L-929 mouse fibroblast cells and cyclic voltammetry, respectively. The surface wettability of ppPPy films demonstrated higher hydrophilicity at 10 W and the films exhibited higher biocompatibility at 10 W and 40 W. The results also showed that the applied power affected the film properties.

    目錄 摘要I AbstractIV 誌謝VI 目錄VII 圖目錄X 表目錄XIII 第一章 緒論1 1-1研究背景1 1-2研究目標2 1-3論文總覽3 第二章 文獻回顧4 2-1光固化材料介紹及其應用4 2-1-1 光固化材料介紹4 2-1-2 光起始聚合法5 2-1-3 光固化材料之應用7 2-2聚多巴胺於生醫材料上的應用9 2-3 電漿介紹14 2-3-1 電漿定義14 2-3-2 電漿應用15 2-3-3 大氣電漿聚合16 2-3-4電漿聚合導電性高分子20 2-4生醫材料與生物相容性25 第三章 實驗方法與儀器原理26 3-1 實驗藥品26 3-1-1光聚合材料26 3-1-2電漿聚合前驅物27 3-1-3 Lactate dehydrogenase (LDH) assay27 3-1-4 MTT assay28 3-1-5細胞培養液28 3-2 實驗設備29 3-3 實驗方法30 3-3-1光起始聚合法30 3-3-2 可攜式大氣電漿系統30 3-3-3 射頻真空電漿系統31 3-3-4真空電漿製備高分子薄膜33 3-3-5細胞繼代培養34 3-3-6細胞接種34 3-3-7 LDH assay35 3-3-8 MTT assay35 3-3-9細胞染色方法35 3-4儀器原理及方法36 3-4-1水接觸角量測儀 (WCA)36 3-4-2橢圓偏光儀 (Ellipsometry)37 3-4-3場發射掃描式電子顯微鏡 (FE-SEM)37 3-4-4原子力顯微鏡 (AFM)38 3-4-5全反射式傅立葉紅外線光譜儀 (ATR-FTIR)38 3-4-6雷射掃描共軛焦顯微鏡 (LSCM)39 3-4-7統計學分析 (statistical analysis)39 第四章 Part I結果與討論40 4-1 利用聚多巴胺修飾光固化材料40 4-1-1光固化材料之表面親疏水性40 4-1-2光固化材料之生物相容性42 4-1-3 PSiO-EOEA之表面組成44 4-1-4 以聚多巴胺增加PSiO-EOEA之生物相容性46 4-2 以大氣電漿處理PSiO-EOEA51 4-2-1以大氣電漿處理PSiO-EOEA之表面親疏水性51 4-2-2以大氣電漿處理PSiO-EOEA之生物相容性52 4-3 以大氣電漿聚合PSiO-EOEA57 4-3-1 以大氣電漿聚合PSiO-EOEA之表面組成57 4-3-2 以大氣電漿聚合PSiO-EOEA之生物相容性59 第五章 Part II結果與討論66 5-1 施加功率對沉積速率之影響 (Ellipsometry)66 5-2 施加功率對表面潤濕性之影響 (WCA)68 5-3 沉積時間對表面粗糙度之影響 (AFM)69 5-4 沉積時間對薄膜表面型態之影響 (SEM)74 5-5 聚吡咯薄膜之表面化學組成 (ATR-FTIR)77 5-6 聚吡咯高分子薄膜之生物相容性 (LDH assay)78 5-7 細胞於聚吡咯高分子薄膜之型態 (confocal microscopy)80 5-8 ppPPy之導電性測定82 第六章 結論84 6-1 以聚多巴胺及大氣電漿增加光固合材料之生物相容性84 6-2 電漿聚合聚吡咯薄膜 (ppPPy)85 第七章 參考文獻88 附錄 問與答96

    1. Shukla, V., M. Bajpai, D. Singh, M. Singh, and R. Shukla, Review of basic chemistry of UV-curing technology. Pigment & Resin Technology, 2004. 33(5): p. 272-279.
    2. Chua, C.K., K.F. Leong, and C.S. Lim, Rapid prototyping: principles and applications. 2010: World Scientific.: p. 35-43.
    3. Azari, A. and S. Nikzad, The evolution of rapid prototyping in dentistry: a review. Rapid Prototyping Journal, 2009. 15(3): p. 216-225.
    4. Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130.
    5. Dickens, S.H., J. Stansbury, K. Choi, and C. Floyd, Photopolymerization kinetics of methacrylate dental resins. Macromolecules, 2003. 36(16): p. 6043-6053.
    6. Tanodekaew, S., S. Channasanon, and P. Uppanan, Preparation and degradation study of photocurable oligolactide‐HA composite: A potential resin for stereolithography application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014. 102(3): p. 604-611.
    7. Oesterreicher, A., A. Moser, M. Edler, H. Griesser, S. Schlögl, M. Pichelmayer, and T. Griesser, Investigating Photocurable Thiol‐Yne Resins for Biomedical Materials. Macromolecular Materials and Engineering, 2017. 302(5).
    8. Karahan, Ö., D.K. Balta, N. Arsu, and D. Avci, Synthesis and evaluations of novel photoinitiators with side-chain benzophenone, derived from alkyl α-hydroxymethacrylates. Journal of Photochemistry and Photobiology A: Chemistry, 2014. 274: p. 43-49.
    9. Bax, D.V., A. Kondyurin, A. Waterhouse, D.R. McKenzie, A.S. Weiss, and M.M. Bilek, Surface plasma modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and reduced thrombogenicity. Biomaterials, 2014. 35(25): p. 6797-6809.
    10. Kulkarni, M., A. Mazare, P. Schmuki, and A. Iglič, Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 2014. 5: p. 112-130.
    11. McCullough, E.J. and V.K. Yadavalli, Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 2013. 213(6): p. 947-954.
    12. Domingos, M., F. Intranuovo, A. Gloria, R. Gristina, L. Ambrosio, P. Bártolo, and P. Favia, Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomaterialia, 2013. 9(4): p. 5997-6005.
    13. Okada, M., K. Matsuda, T. Sato, K. Yamada, K. Matsuda, and T. Hiaki, Polymerization of Methyl Methacrylate Initiated by Atmospheric Pressure Plasma Jet. Journal of Photopolymer Science and Technology, 2015. 28(3): p. 461-464.
    14. Strobel, M., C.S. Lyons, and K. Mittal, Plasma surface modification of polymers: relevance to adhesion. 1994: Vsp.
    15. Liu, S., M.M. Vareiro, S. Fraser, and A.T.A. Jenkins, Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions. Langmuir, 2005. 21(19): p. 8572-8575.
    16. Vassallo, E., A. Cremona, L. Laguardia, and E. Mesto, Preparation of plasma-polymerized SiO x-like thin films from a mixture of hexamethyldisiloxane and oxygen to improve the corrosion behaviour. Surface and Coatings Technology, 2006. 200(9): p. 3035-3040.
    17. Brinkmann, N., D. Sommer, G. Micard, G. Hahn, and B. Terheiden, Electrical, optical and structural investigation of plasma-enhanced chemical-vapor-deposited amorphous silicon oxynitride films for solar cell applications. Solar Energy Materials and Solar Cells, 2013. 108: p. 180-188.
    18. Pappas, S.P., Radiation curing: science and technology. 2013: Springer Science & Business Media.
    19. Bunning, T.J., L.V. Natarajan, V.P. Tondiglia, and R. Sutherland, Holographic polymer-dispersed liquid crystals (H-PDLCs) 1. Annual Review of Materials Science, 2000. 30(1): p. 83-115.
    20. Sun, H.-B. and S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication, in NMR• 3D Analysis• Photopolymerization. 2004, Springer. p. 169-273.
    21. Decker, C., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093.
    22. Mishra, M. and Y. Yagci, Handbook of vinyl polymers: radical polymerization, process, and technology. 2008: CRC press.
    23. Yağci, Y. and I. Reetz, Externally stimulated initiator systems for cationic polymerization. Progress in Polymer Science, 1998. 23(8): p. 1485-1538.
    24. Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 2010. 43(15): p. 6245-6260.
    25. Ge, Z., C. Huang, C. Zhou, and Y. Luo, Synthesis of a novel UV crosslinking waterborne siloxane–polyurethane. Progress in Organic Coatings, 2016. 90: p. 304-308.
    26. Jiang, B., T. Zhang, L. Zhao, Z. Xu, and Y. Huang, Effect of Polymerizable Photoinitiators on the UV‐polymerization behaviors of photosensitive polysiloxane. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55(10): p. 1696-1705.
    27. Gu, B.K., D.J. Choi, S.J. Park, M.S. Kim, C.M. Kang, and C.-H. Kim, 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 2016. 20(1): p. 12.
    28. Elomaa, L., C.-C. Pan, Y. Shanjani, A. Malkovskiy, J.V. Seppälä, and Y. Yang, Three-dimensional fabrication of cell-laden biodegradable poly (ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. Journal of Materials Chemistry B, 2015. 3(42): p. 8348-8358.
    29. Li, B.-c., H. Chang, K.-f. Ren, and J. Ji, Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells. Colloids and Surfaces B: Biointerfaces, 2016. 147: p. 172-179.
    30. Zangmeister, R.A., T.A. Morris, and M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013. 29(27): p. 8619-8628.
    31. Lee, H., S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430.
    32. Lynge, M.E., R. van der Westen, A. Postma, and B. Städler, Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale, 2011. 3(12): p. 4916-4928.
    33. Wang, J.-l., B.-c. Li, Z.-j. Li, K.-f. Ren, L.-j. Jin, S.-m. Zhang, H. Chang, Y.-x. Sun, and J. Ji, Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014. 35(27): p. 7679-7689.
    34. Lee, Y.B., Y.M. Shin, J.-h. Lee, I. Jun, J.K. Kang, J.-C. Park, and H. Shin, Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 2012. 33(33): p. 8343-8352.
    35. Madhurakkat Perikamana, S.K., J. Lee, Y.B. Lee, Y.M. Shin, E.J. Lee, A.G. Mikos, and H. Shin, Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules, 2015. 16(9): p. 2541-2555.
    36. Chen, X., C. Cortez-Jugo, G.H. Choi, M. Björnmalm, Y. Dai, P.J. Yoo, and F. Caruso, Patterned Poly (dopamine) Films for Enhanced Cell Adhesion. Bioconjugate Chemistry, 2016.
    37. Duan, L.J., Y. Liu, J. Kim, and D.J. Chung, Bioinspired and biocompatible adhesive coatings using poly (acrylic acid)‐grafted dopamine. Journal of Applied Polymer Science, 2013. 130(1): p. 131-137.
    38. Chien, H.-W. and W.-B. Tsai, Fabrication of tunable micropatterned substrates for cell patterning via microcontact printing of polydopamine with poly (ethylene imine)-grafted copolymers. Acta Biomaterialia, 2012. 8(10): p. 3678-3686.
    39. Bittencourt, J.A., Fundamentals of plasma physics. 2013: Springer Science & Business Media.
    40. Nishikawa, K. and M. Wakatani, Plasma Physics: basic theory with fusion applications. Vol. 8. 2013: Springer Science & Business Media.
    41. Chu, P.K., J. Chen, L. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5): p. 143-206.
    42. Pankaj, S.K., C. Bueno-Ferrer, N. Misra, V. Milosavljević, C. O'Donnell, P. Bourke, K. Keener, and P. Cullen, Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 2014. 35(1): p. 5-17.
    43. Economou, D.J., Pulsed plasma etching for semiconductor manufacturing. Journal of Physics D: Applied Physics, 2014. 47(30): p. 303001.
    44. Ben Salem, D., O. Carton, H. Fakhouri, J. Pulpytel, and F. Arefi‐Khonsari, Deposition of water stable plasma polymerized acrylic acid/MBA organic coatings by atmospheric pressure air plasma jet. Plasma Processes and Polymers, 2014. 11(3): p. 269-278.
    45. Testrich, H., H. Rebl, B. Finke, F. Hempel, B. Nebe, and J. Meichsner, Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Materials Science and Engineering: C, 2013. 33(7): p. 3875-3880.
    46. Donnelly, V.M. and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050825.
    47. Chan, C.-M., T.-M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface Science Reports, 1996. 24(1-2): p. 1-54.
    48. Song, W., X. Wang, Q. Wang, D. Shao, and X. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics, 2015. 17(1): p. 398-406.
    49. Gupta, B., C. Plummer, I. Bisson, P. Frey, and J. Hilborn, Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 2002. 23(3): p. 863-871.
    50. Inagaki, N., Plasma surface modification and plasma polymerization. 1996: CRC Press.
    51. Flamm, D.L., O. Auciello, and R. d'Agostino, Plasma deposition, treatment, and etching of polymers: the treatment and etching of polymers. 2012: Elsevier.
    52. Bhatt, S., J. Pulpytel, and F. Arefi-Khonsari, Low and atmospheric plasma polymerisation of nanocoatings for bio-applications. Surf. Innov., 2015. 3.
    53. Molina, R., P. Jovancic, S. Vilchez, T. Tzanov, and C. Solans, In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydrate Polymers, 2014. 103: p. 472-479.
    54. Molina, R., C. Ligero, P. Jovančić, and E. Bertran, In situ polymerization of aqueous solutions of NIPAAm initiated by atmospheric plasma treatment. Plasma Processes and Polymers, 2013. 10(6): p. 506-516.
    55. Ravichandran, R., S. Sundarrajan, J.R. Venugopal, S. Mukherjee, and S. Ramakrishna, Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society Interface, 2010: p. rsif20100120.
    56. Zhang, Z., J. Dou, F. Yan, X. Zheng, X. Li, and S. Fang, Plasma polymerized pyrrole films for biological applications: correlation between protein adsorption properties and characteristics. Plasma Processes and Polymers, 2011. 8(10): p. 923-931.
    57. Koduru, H.K., L. Marino, J. Vallivedu, C.J. Choi, and N. Scaramuzza, Microstructural, wetting, and dielectric properties of plasma polymerized polypyrrole thin films. Journal of Applied Polymer Science, 2016. 133(38).
    58. Li, C., J. Hsieh, and Y. Lee, Effects of radio frequency power on the microstructures and properties of plasma polymerized polypyrrole thin films. Vacuum, 2017. 140: p. 132-138.
    59. Li, C., J. Hsieh, and Y. Lee, Fabrication and structural characterization of plasma polymerized polypyrrole thin film. Surface and Coatings Technology, 2017. 320: p. 206-212.
    60. Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science techniques. 2013, Springer. p. 3-34.
    61. Cui, J., Y. Ju, K. Liang, H. Ejima, S. Lörcher, K.T. Gause, J.J. Richardson, and F. Caruso, Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. Soft Matter, 2014. 10(15): p. 2656-2663.
    62. Li, H., B. Luo, W. Wen, C. Zhou, L. Tian, and S. Ramakrishna, Deferoxamine immobilized poly (D, L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells. Materials Science and Engineering: C, 2017. 70: p. 701-709.
    63. Zhao, C., G. Zhang, X. Xu, F. Yang, and Y. Yang, Rapidly self-assembled polydopamine coating membranes with polyhexamethylene guanidine: Formation, characterization and antifouling evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 512: p. 41-50.
    64. Xu, X., Q. Zheng, B.L. Song, X. Cao, S. Liu, and C. Yao, Polydopamine induced in-situ growth of Au nanoparticles on reduced graphene oxide as an efficient biosensing platform for ultrasensitive detection of bisphenol A. Electrochimica Acta, 2017.
    65. Wang, S., Q. Lin, J. Chen, H. Gao, D. Fu, and S. Shen, Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon, 2017. 112: p. 53-62.
    66. Yu, X., J. Walsh, and M. Wei, Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular performances of MC3T3-E1 cells. RSC Advances, 2014. 4(14): p. 7185-7192.
    67. Liu, Y., K. Ai, and L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014. 114(9): p. 5057-5115.
    68. Ahmadi, A., B. Ramezanzadeh, and M. Mahdavian, Hybrid silane coating reinforced with silanized graphene oxide nanosheets with improved corrosion protective performance. RSC Advances, 2016. 6(59): p. 54102-54112.
    69. YanáMa, X., Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Advances, 2015. 5(17): p. 12578-12582.
    70. Zhang, M., D. Zang, J. Shi, Z. Gao, C. Wang, and J. Li, Superhydrophobic cotton textile with robust composite film and flame retardancy. RSC Advances, 2015. 5(83): p. 67780-67786.
    71. Zain, N.M., R. Hussain, and M.R.A. Kadir, Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization. Applied Surface Science, 2014. 322: p. 169-176.
    72. Fu, J., Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, and Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 2015. 259: p. 53-61.
    73. Qiu, Z., J. Wang, K. Yang, J. Guo, W. Wang, R. Pan, and G. Wu, Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano‐silicon dioxide modified by polydopamine. Journal of Applied Polymer Science, 2017. 134(26).
    74. Singer, F., M. Schlesak, C. Mebert, S. Höhn, and S. Virtanen, Corrosion Properties of Polydopamine Coatings Formed in One-Step Immersion Process on Magnesium. ACS Applied Materials & Interfaces, 2015. 7(48): p. 26758-26766.
    75. Gittens, R.A., L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, and B.D. Boyan, A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomaterialia, 2014. 10(7): p. 2907-2918.
    76. Lee, J.-H., J.-S. Kwon, J.-y. Om, Y.-H. Kim, E.-H. Choi, K.-M. Kim, and K.-N. Kim, Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. Japanese Journal of Applied Physics, 2014. 53(8): p. 086202.
    77. Doherty, K.G., J.S. Oh, P. Unsworth, A. Bowfield, C.M. Sheridan, P. Weightman, J.W. Bradley, and R.L. Williams, Polystyrene Surface Modification for Localized Cell Culture Using a Capillary Dielectric Barrier Discharge Atmospheric‐Pressure Microplasma Jet. Plasma Processes and Polymers, 2013. 10(11): p. 978-989.
    78. Kuzminova, A., M. Vandrovcová, A. Shelemin, O. Kylián, A. Choukourov, J. Hanuš, L. Bačáková, D. Slavínská, and H. Biederman, Treatment of poly (ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth. Applied Surface Science, 2015. 357: p. 689-695.
    79. Vasquez‐Ortega, M., M. Ortega, J. Morales, M.G. Olayo, G.J. Cruz, and R. Olayo, Core–shell polypyrrole nanoparticles obtained by atmospheric pressure plasma polymerization. Polymer International, 2014. 63(12): p. 2023-2029.
    80. Gan, J.K., Y.S. Lim, N.M. Huang, and H.N. Lim, Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors. RSC Advances, 2015. 5(92): p. 75442-75450.
    81. Lu, M., R. Xie, Z. Liu, Z. Zhao, H. Xu, and Z. Mao, Enhancement in electrical conductive property of polypyrrole‐coated cotton fabrics using cationic surfactant. Journal of Applied Polymer Science, 2016. 133(32).
    82. Kamal, M. and A. Bhuiyan, Structural and optical characterization of plasma polymerized pyrrole monolayer thin films. Advances in Optoelectronic Materials (AOM), 2013. 1(2): p. 11-17.
    83. Steele, J.G., G. Johnson, C. McFarland, B. Dalton, T. Gengenbach, R. Chatelier, P.A. Underwood, and H. Griesser, Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen-and nitrogen-containing surfaces made by radiofrequency plasmas. Journal of Biomaterials Science, Polymer Edition, 1995. 6(6): p. 511-532.
    84. Kaklamani, G., N. Mehrban, J. Bowen, H. Dong, L. Grover, and A. Stamboulis, Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glass. Materials Letters, 2013. 111: p. 225-229.
    85. Dams, R., D. Vangeneugden, and D. Vanderzande, Atmospheric pressure plasma polymerization of in situ doped polypyrrole. Open Plasma Phys. J, 2013. 6: p. 7-13.

    無法下載圖示 全文公開日期 2022/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE