簡易檢索 / 詳目顯示

研究生: 蔡志旻
Chih-Min Tsai
論文名稱: 常壓電漿噴射束製備銀銅合金薄膜之研究
Study of Ag-Cu Alloy Coatings Deposited by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 周育任
Yu-Jen Chou
王丞浩
Chen-Hao Wang
楊永欽
Yung-Chin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 常壓電漿噴射束銀銅合金導電薄膜鍍膜
外文關鍵詞: APPJ, Ag-Cu atoms, Conductive thin film, Coating
相關次數: 點閱:370下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學氣相沉積(Chemical vapor deposition,CVD),為現在半導體製程薄膜階段主要方式,原因為優良的覆蓋率與可控制薄膜厚度,真空鍍膜的技術發展至今已經相當成熟,而本實驗將使用常壓電漿噴射束來替代傳統的真空電漿,且相較於傳統真空電漿,目前常壓電漿仍有許多可發展性。
本實驗將利用氬氣與氫氣混合氣做為主要氣體,氬氣作為次要氣體,並且固定頻率、功率、速度、次數與距離等條件,將改變溶液濃度0.05M與0.1M以及5種不同比例分別為純銀、10%Cu90%Ag、50%Cu50%Ag、90%Cu10%Ag、純銅,在實驗開始時會先使用熱電偶溫度感測儀來量測電漿溫度以便挑選工作距離,接下來使用光學放射光譜儀(OES)蒐集電漿鍍膜過程所產生出的物種以及自由基,再以場發射掃描式電子顯微鏡(SEM)對觀察表面沉積以及剖面觀測薄膜厚度並且搭配Mapping來更加方便觀測,再使用X光繞射儀(XRD)來檢測表面物種,以及使用X射線螢光光譜儀(XRF)來檢測表面物種比例,最後使用四點探針檢測表面電性,根據本實驗結果可得XRD時銀的峰值明顯偏右,為置換式固融銀的FCC與銅做結合變成類似NaCl的結構,應此氧化銅比例下降,在電性上可以量測到薄膜的電阻,與純銅電阻相差不遠,固本次使用常壓電漿束可成功製成具有良好導電性薄膜。


Chemical vapor deposition,CVD, is the main method in the current semiconductor manufacturing thin film process. The reason is that the excellent coverage and controllable film thickness. The vacuum coating technology has been developed so far that it is quite mature, and the experiment will use the atmospheric pressure plasma jet beams replace the traditional vacuum plasma, and compared with traditional vacuum plasma, there are still many development possibilities for the atmospheric pressure plasma.
This experiment will use a mixture of argon and hydrogen as the main gas, argon as the carry gas. We will fixed frequency, power, speed, times and distance, and change the solution concentration 0.05M and 0.1M and 5 different ratios. They are pure silver,10%copper90%silver,50%copper50%silver,90%copper10%silver, pure silver. At the beginning of the experiment, a thermocouple temperature sensor will be used to measure the plasma temperature in order to select the working distance, and then the optical emission pesctrometer(OES) will be used to collect the species and free radicals produced by the plasma coating process, and then use the field. The emission scanning electron microscope(SEM) observes the surface deposition and cross-section observation of the film thickness and matches with mapping for more convenient observation, and then uses X-ray diffraction Spectrometer (XRD) to detect surface species, and uses X-ray fluorescence (XRF) to detect the film thickness and surface species ratio, and finally use a four-point probe to detect the surface electrical properties. According to the results of this experiment, the silver peak value during XRD is obviously to the right, which is a displacement solid melt. The combination of FCC and copper of silver becomes a structure similar to NaCl. Therefore, the proportion of copper oxide decreases. The electrical part also has excellent sheet resistance detected, which can be successfully made with god electrical conductivity by using an ordinary piezoelectric slurry beam film.

圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 5 2.1 鍍膜簡介 5 2.1.1 薄膜生長模式 8 2.1.2 Thornton`s Structure Zone Model 10 2.1.3 物理氣相沉積 11 2.1.4 濺鍍 12 2.1.5 化學氣相沉積 15 2.1.6 氣溶膠輔助輔助化學氣相沉積法(AACVD) 16 2.1.7 常壓化學氣相沉積(APCVD) 17 2.1.8 電漿增強型化學氣相沉積法(PECVD) 18 2.1.9 高密度電漿化學氣相沉積(HDPCVD) 19 2.2 銀元素 20 2.2.1 奈米銀 21 2.2.2 銀導線 22 2.3 銅元素 22 2.3.1 銅製程 24 2.4 銅銀合金 25 2.5 大氣電漿簡介 27 2.5.1 電漿管理與機制 28 2.5.2 電漿分類 30 2.5.3 崩潰電壓 33 2.5.4 常壓電漿 34 2.5.5 常壓電漿應用 37 第三章 研究方法及儀器設備 43 3.1 研究架構 43 3.1.1 基材前處理 43 3.1.2 電漿處理 44 3.2 實驗藥品與設備 46 3.2.1 實驗材料介紹 46 3.2.2 實驗儀器介紹 47 3.2.3 大氣電漿系統設定 48 3.2.4 霧化瓶 50 3.2.5 熱電偶感測儀 52 3.2.6 光學放射光譜儀(OES) 53 3.2.7 X光繞射儀(X-ray Diffractometer Spectrometer,XRD) 54 3.2.8 場發射掃描式電子顯微鏡(SEM) 56 3.2.9 四點探針(4 points probe) 58 3.2.10 X射線螢光光譜儀(XRF) 58 第四章 實驗結果討論 60 4.1 常壓電漿噴射束溫度量測 60 4.2 常壓電漿噴射束電漿種類偵測 62 4.3 X光繞射分析 64 4.4 場發射掃描式電子顯微鏡分析 69 4.4.1 表面分析 69 4.4.2 剖面分析 76 4.5 Mapping 79 4.5.1 剖面分析 80 4.6 薄膜分析 84 4.6.1 X射線螢光光譜儀分析 84 4.6.2 四點探針分析 85 4.7 實驗機制 87 4.7.1 電漿鍍膜機制 87 第五章 結論 90 第六章 未來展望 92 第七章 參考文獻 93

[1] 李邦哲, "薄膜形成技術新紀元," 2003.
[2] https://ir.nctu.edu.tw/bitstream/11536/80905/5/450705.pdf.
[3]https://gsmat10106.weebly.com/34180331802521634899200432969427841332872363726395.html.
[4] J. E. J. J. o. V. S. Greene, S. Technology A: Vacuum, and Films, "Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017," vol. 35, no. 5, p. 05C204, 2017.
[5] M. R. Vaziri, F. Hajiesmaeilbaigi, and M. J. J. o. P. D. A. P. Maleki, "Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas," vol. 43, no. 42, p. 425205, 2010.
[6] 楊承道、鄭廖平, "薄膜科技 解密," 科學月刊, 2016.
[7] S. Staff, "What is XRF (X-ray Fluorescence) and How Does it Work?," ThermoFisher Scientfic, 2020.
[8] 郭福升, "大面積常壓電漿技術之研究," 碩士, 化學系碩博士班, 國立成功大學, 台南市, 2003.
[9] I. Petrov, P. Barna, L. Hultman, J. J. J. o. V. S. Greene, S. Technology A: Vacuum, and Films, "Microstructural evolution during film growth," vol. 21, no. 5, pp. S117-S128, 2003.
[10] 王志明, "鍍 膜 技 術 實 務."
[11] J. Venables and G. J. S. M. o. S. M. Spiller, "Nucleation and growth of thin films," pp. 341-404, 1983.
[12] K. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, V. V. Dirko, A. V. J. S. Voitsekhovskii, and C. Technology, "Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes," vol. 384, p. 125289, 2020.
[13] E. J. A. S. Kusano and C. Technology, "Structure-zone modeling of sputter-deposited thin films: a brief review," vol. 28, no. 6, pp. 179-185, 2019.
[14] B. A. Movchan and A. J. F. M. M.-. Demchishin, "STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM," 1969.
[15] E. J. J. o. V. S. Kusano, S. Technology A: Vacuum, and Films, "Revisitation of the structure zone model based on the investigation of the structure and properties of Ti, Zr, and Hf thin films deposited at 70–600° C using DC magnetron sputtering," vol. 36, no. 4, p. 041506, 2018.
[16] E. J. J. o. V. S. Kusano, S. Technology A: Vacuum, and Films, "Homologous substrate-temperature dependence of structure and properties of TiO2, ZrO2, and HfO2 thin films deposited by reactive sputtering," vol. 37, no. 5, p. 051508, 2019.
[17] C. Charpentier, P. Prod’Homme, I. Maurin, M. Chaigneau, and P. R. J. E. P. i Cabarrocas, "X-Ray diffraction and Raman spectroscopy for a better understanding of ZnO: Al growth process," vol. 2, p. 25002, 2011.
[18] 羅. 李. 鄭湘原, "半導體工程-先進製程與模擬."
[19] G. Faraji, H. S. Kim, and H. T. Kashi, Severe plastic deformation: methods, processing and properties. Elsevier, 2018.
[20] S. J. P. i. t. Swann, "Magnetron sputtering," vol. 19, no. 2, p. 67, 1988.
[21] S. M. J. I. J. o. R. Rossnagel and Development, "Sputter deposition for semiconductor manufacturing," vol. 43, no. 1.2, pp. 163-179, 1999.
[22] S. J. J. o. V. S. Rossnagel, S. Technology A: Vacuum, and Films, "Thin film deposition with physical vapor deposition and related technologies," vol. 21, no. 5, pp. S74-S87, 2003.
[23] K. Seshan, Handbook of thin film deposition. William Andrew, 2012.
[24] S. Dew et al., "Spatial and angular nonuniformities from collimated sputtering," vol. 11, no. 4, pp. 1281-1286, 1993.
[25] B. Vollmer, T. Licata, D. Restaino, and J. J. T. S. F. Ryan, "Recent advances in the application of collimated sputtering," vol. 247, no. 1, pp. 104-111, 1994.
[26] B. Monárrez-Cordero, P. Amézaga-Madrid, A. Sáenz-Trevizo, P. Pizá-Ruiz, W. Antúnez-Flores, and M. J. C. I. Miki-Yoshida, "Synthesis and characterization of composite Fe-Ti oxides nanoparticles with high surface area obtained via AACVD," vol. 44, no. 6, pp. 6990-6996, 2018.
[27] B. Monárrez-Cordero et al., "Theoretical and experimental analysis of the aerosol assisted CVD synthesis of magnetite hollow nanoparticles," vol. 615, pp. S328-S334, 2014.
[28] U. Brykała, R. Diduszko, K. Jach, and J. J. C. I. Jagielski, "Hot pressing of gadolinium zirconate pyrochlore," vol. 41, no. 2, 2015.
[29] K. J. P. i. m. s. Choy, "Chemical vapour deposition of coatings," vol. 48, no. 2, pp. 57-170, 2003.
[30] H. R. Choi et al., "Nanoporous silver cathode surface-treated by aerosol-assisted chemical vapor deposition of gadolinia-doped ceria for intermediate-temperature solid oxide fuel cells," vol. 402, pp. 246-251, 2018.
[31] D. S. Bhachu, G. Sankar, and I. P. J. C. o. M. Parkin, "Aerosol assisted chemical vapor deposition of transparent conductive zinc oxide films," vol. 24, no. 24, pp. 4704-4710, 2012.
[32] C. Sanchez-Perez, S. C. Dixon, J. A. Darr, I. P. Parkin, and C. J. J. C. s. Carmalt, "Aerosol-assisted route to low-E transparent conductive gallium-doped zinc oxide coatings from pre-organized and halogen-free precursor," vol. 11, no. 19, pp. 4980-4990, 2020.
[33] J. E. Swallow et al., "Resonant doping for high mobility transparent conductors: the case of Mo-doped In 2 O 3," vol. 7, no. 1, pp. 236-243, 2020.
[34] N. Noor, C. K. Chew, D. S. Bhachu, M. R. Waugh, C. J. Carmalt, and I. P. J. J. o. M. C. C. Parkin, "Influencing FTO thin film growth with thin seeding layers: a route to microstructural modification," vol. 3, no. 36, pp. 9359-9368, 2015.
[35] B. A. Williamson et al., "Resonant Ta doping for enhanced mobility in transparent conducting SnO2," vol. 32, no. 5, pp. 1964-1973, 2020.
[36] K. S. Joya, M. A. Ehsan, M. Sohail, and Z. H. J. J. o. M. C. A. Yamani, "Nanoscale palladium as a new benchmark electrocatalyst for water oxidation at low overpotential," vol. 7, no. 15, pp. 9137-9144, 2019.
[37] C.-C. Huang et al., "Scalable high-mobility MoS 2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature," vol. 6, no. 21, pp. 12792-12797, 2014.
[38] H. D. Le, T. T. T. Ngo, D. Q. Le, X. N. Nguyen, N. M. J. A. i. N. S. N. Phan, and Nanotechnology, "Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method," vol. 4, no. 3, p. 035012, 2013.
[39] H. Suhr, A. Etspüler, E. Feurer, S. J. P. C. Kraus, and P. Processing, "Alloys prepared by plasma-enhanced chemical vapor deposition (PECVD)," vol. 9, no. 2, pp. 217-223, 1989.
[40] M. Okai, T. Muneyoshi, T. Yaguchi, and S. J. A. P. L. Sasaki, "Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition," vol. 77, no. 21, pp. 3468-3470, 2000.
[41] B. Karunamurthy, T. Ostermann, M. Bhattacharya, and S. J. M. J. Maity, "A novel simulation methodology for full chip-package thermo-mechanical reliability investigations," vol. 45, no. 7, pp. 966-971, 2014.
[42] H. P. Mungekar, Y. S. J. J. o. V. S. Lee, T. B. Microelectronics, M. Nanometer Structures Processing, and Phenomena, "High density plasma chemical vapor deposition gap-fill mechanisms," vol. 24, no. 2, pp. L11-L15, 2006.
[43] W. B. Wang et al., "Superconformal chemical vapor deposition of thin films in deep features," vol. 32, no. 5, p. 051512, 2014.
[44] J. Yota, J. Hander, A. J. J. o. V. S. Saleh, S. Technology A: Vacuum, and Films, "A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films," vol. 18, no. 2, pp. 372-376, 2000.
[45] K.-i. Koyanagi et al., "Stability and application to multilevel metallization of fluorine-doped silicon oxide by high-density plasma chemical vapor deposition," vol. 39, no. 3R, p. 1091, 2000.
[46] R. Philip, G. R. Kumar, N. Sandhyarani, and T. J. P. R. B. Pradeep, "Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters," vol. 62, no. 19, p. 13160, 2000.
[47] K. Mijnendonckx, N. Leys, J. Mahillon, S. Silver, and R. J. B. Van Houdt, "Antimicrobial silver: uses, toxicity and potential for resistance," vol. 26, no. 4, pp. 609-621, 2013.
[48] J. W. J. S. i. Alexander, "History of the medical use of silver," vol. 10, no. 3, pp. 289-292, 2009.
[49] H. J. B. Klasen, "Historical review of the use of silver in the treatment of burns. I. Early uses," vol. 26, no. 2, pp. 117-130, 2000.
[50] M. T. Yahya, L. K. Landeen, M. C. Messina, S. M. Kutz, R. Schulze, and C. P. J. C. J. o. M. Gerba, "Disinfection of bacteria in water systems by using electrolytically generated copper: silver and reduced levels of free chlorine," vol. 36, no. 2, pp. 109-116, 1990.
[51] W. K. Jung et al., "Antifungal activity of the silver ion against contaminated fabric," vol. 50, no. 4, pp. 265-269, 2007.
[52] A. Elements, "https://www.americanelements.com/copper-silver-alloy-12249-45-5?amp."
[53] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. Elsevier, 2012.
[54] F. Ag Silver – Element Information, Properties, Trends,Uses, Comparison with other elements, "https://www.schoolmykids.com/learn/interactive-periodic-table/ag-silver."
[55] G. Oberdörster et al., "Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy," vol. 2, no. 1, pp. 1-35, 2005.
[56] K.-S. Lee and M. A. J. T. J. o. P. C. B. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition," vol. 110, no. 39, pp. 19220-19225, 2006.
[57] D. Cheng, J. Yang, and Y. J. C. M. E. J. Zhao, "Antibacterial materials of silver nanoparticles application in medical appliances and appliances for daily use," vol. 4, pp. 26-32, 2004.
[58] J. Chen, C. Han, X. Lin, Z. Tang, and S. J. Z. w. k. z. z. Su, "Effect of silver nanoparticle dressing on second degree burn wound," vol. 44, no. 1, pp. 50-52, 2006.
[59] M. S. Cohen et al., "In vitro analysis of a nanocrystalline silver-coated surgical mesh," vol. 8, no. 3, pp. 397-404, 2007.
[60] A. B. J. B. t. Lansdown and t. skin, "Silver in health care: antimicrobial effects and safety in use," vol. 33, pp. 17-34, 2006.
[61] B. Wiley, T. Herricks, Y. Sun, and Y. J. N. L. Xia, "Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons," vol. 4, no. 9, pp. 1733-1739, 2004.
[62] M. Hanisch, M. Mačković, N. Taccardi, E. Spiecker, and R. N. K. J. C. C. Taylor, "Synthesis of silver nanoparticle necklaces without explicit addition of reducing or templating agents," vol. 48, no. 36, pp. 4287-4289, 2012.
[63] B. J. Wiley et al., "Synthesis and optical properties of silver nanobars and nanorice," vol. 7, no. 4, pp. 1032-1036, 2007.
[64] B. Xue et al., "Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity," vol. 7, no. 17, pp. 8048-8057, 2015.
[65] B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, and Y. J. N. l. Xia, "Right bipyramids of silver: a new shape derived from single twinned seeds," vol. 6, no. 4, pp. 765-768, 2006.
[66] H. N. Tran et al., "Optical nanoparticles: synthesis and biomedical application," vol. 6, no. 2, p. 023002, 2015.
[67] E. Hahm et al., "Multilayer Ag-embedded silica nanostructure as a surface-enhanced raman scattering-based chemical sensor with dual-function internal standards," vol. 10, no. 47, pp. 40748-40755, 2018.
[68] S. H. Lee and B.-H. J. I. j. o. m. s. Jun, "Silver nanoparticles: synthesis and application for nanomedicine," vol. 20, no. 4, p. 865, 2019.
[69] M. Arik, C. A. Becker, S. E. Weaver, and J. Petroski, "Thermal management of LEDs: package to system," in Third international conference on solid state lighting, 2004, vol. 5187, pp. 64-75: International Society for Optics and Photonics.
[70] M. Tegoni, D. Valensin, L. Toso, and M. J. C. m. c. Remelli, "Copper chelators: chemical properties and bio-medical applications," vol. 21, no. 33, pp. 3785-3818, 2014.
[71] C. McHenry, "The New Encyclopedia Britannica. 3 . Chicago: Encyclopedia Britannica," ed: Inc, 1992.
[72] N. Ciacotich, R. U. Din, J. J. Sloth, P. Møller, L. J. S. Gram, and C. Technology, "An electroplated copper–silver alloy as antibacterial coating on stainless steel," vol. 345, pp. 96-104, 2018.
[73] W. F. Smith, J. Hashemi, and F. Presuel-Moreno, Foundations of materials science and engineering. Mcgraw-Hill Publishing, 2006.
[74] P. Coddet, C. Verdy, C. Coddet, F. J. M. S. Debray, and E. A, "On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray," vol. 662, pp. 72-79, 2016.
[75] M. Johnson and E. J. I. R. Larry, "Copper. Merck manual home health handbook. Merck Sharp and Dohme Corp., a subsidiary of Merck & Co," vol. 7, 2008.
[76] "https://in.pinterest.com/pin/678143656370075778/."
[77] https://www.belmontmetals.com/benefits-of-alloying-ag-with-copper-alloys/.
[78] K. Toyozawa, K. Fujita, S. Minamide, T. J. I. T. o. C. Maeda, Hybrids,, and M. Technology, "Development of copper wire bonding application technology," vol. 13, no. 4, pp. 667-672, 1990.
[79] D. B. J. C. M. R. Yoffie, "Competing in the age of digital convergence," vol. 38, no. 4, p. 31, 1996.
[80] G. Krause et al., "In-depth analysis and characterization of a dual damascene process with respect to different CD," in Metrology, Inspection, and Process Control for Microlithography XXXII, 2018, vol. 10585, p. 105852T: International Society for Optics and Photonics.
[81] S. Chambers, V. Loebs, K. J. J. o. V. S. Chakravorty, S. Technology A: Vacuum, and Films, "Oxidation of Cu in contact with preimidized polyimide," vol. 8, no. 2, pp. 875-884, 1990.
[82] H. Miyazaki, K. Hinode, Y. Homma, and K. J. J. S. A. P. Mukai, "Extended Abstract of 48th Fall Meeting," p. 329, 1987.
[83] J. Li, J. Mayer, and E. J. J. o. a. p. Colgan, "Oxidation and protection in copper and copper alloy thin films," vol. 70, no. 5, pp. 2820-2827, 1991.
[84] G. Ghosh, J. Miyake, and M. J. J. Fine, "The systems-based design of high-strength, high-conductivity alloys," vol. 49, no. 3, pp. 56-60, 1997.
[85] P. Chen, J. Sanders, Y. Liaw, F. J. M. S. Zimmermann, and E. A, "Ductility degradation of vacuum-plasma-sprayed NARloy-Z at elevated temperatures," vol. 199, no. 2, pp. 145-152, 1995.
[86] Y. Sakai, K. Inoue, and H. J. A. m. e. m. Maeda, "New high-strength, high-conductivity Cu-Ag alloy sheets," vol. 43, no. 4, pp. 1517-1522, 1995.
[87] J. Freudenberger et al., "Non-destructive pulsed field CuAg-solenoids," vol. 527, no. 7-8, pp. 2004-2013, 2010.
[88] A. Gaganov, J. Freudenberger, E. Botcharova, L. J. M. S. Schultz, and E. A, "Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu–7 wt.% Ag alloys," vol. 437, no. 2, pp. 313-322, 2006.
[89] K. X. Wei et al., "Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5% Cr alloy processed by severe plastic deformation," vol. 528, no. 3, pp. 1478-1484, 2011.
[90] T. Çakmak et al., "Novel strategy for one-step production of attenuated Ag-containing AgCu/ZnO antibacterial-antifungal nanocomposite particles," vol. 59, no. 5, pp. 261-270, 2020.
[91] J. A. Bittencourt, Fundamentals of plasma physics. Springer Science & Business Media, 2013.
[92] G. Selwyn, H. Herrmann, J. Park, and I. J. C. t. P. P. Henins, "Materials Processing Using an Atmospheric Pressure, RF‐Generated Plasma Source," vol. 41, no. 6, pp. 610-619, 2001.
[93] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. John Wiley & Sons, 2005.
[94] 楊超棨, "介電質常壓電漿產生器之開發及其於質譜分析之應用," 撰者, 2010.
[95] J. Winter, R. Brandenburg, K. J. P. S. S. Weltmann, and Technology, "Atmospheric pressure plasma jets: an overview of devices and new directions," vol. 24, no. 6, p. 064001, 2015.
[96] J. Winter, Brandenburg, R., Weltmann, K. J. P. S. S., "Atmospheric pressure plasma jets: an overview of devices and new directions.," 24(6), 064001., 2015.
[97] A. Fridman, Plasma chemistry. Cambridge university press, 2008.
[98] T. Takamatsu et al., "Investigation of reactive species using various gas plasmas," vol. 4, no. 75, pp. 39901-39905, 2014.
[99] D. P. Subedi, U. M. Joshi, and C. San Wong, "Dielectric barrier discharge (DBD) plasmas and their applications," in Plasma Science and Technology for Emerging Economies: Springer, 2017, pp. 693-737.
[100]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. J. S. A. P. B. A. S. Leprince, "Atmospheric pressure plasmas: A review," vol. 61, no. 1, pp. 2-30, 2006.
[101]J. Trelles, C. Chazelas, A. Vardelle, and J. J. J. o. t. s. t. Heberlein, "Arc plasma torch modeling," vol. 18, no. 5, pp. 728-752, 2009.
[102]T. Lee, P. Puligundla, and C. J. J. o. F. E. Mok, "Intermittent corona discharge plasma jet for improving tomato quality," vol. 223, pp. 168-174, 2018.
[103]V. Rat, J. Aubreton, M. Elchinger, P. Fauchais, and A. J. P. R. E. Murphy, "Diffusion in two-temperature thermal plasmas," vol. 66, no. 5, p. 056407, 2002.
[104]L. Bárdos and H. J. T. S. F. Baránková, "Cold atmospheric plasma: Sources, processes, and applications," vol. 518, no. 23, pp. 6705-6713, 2010.
[105]D. J. J. o. V. S. Pappas, S. Technology A: Vacuum, and Films, "Status and potential of atmospheric plasma processing of materials," vol. 29, no. 2, p. 020801, 2011.
[106]A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. J. I. t. o. p. s. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," vol. 26, no. 6, pp. 1685-1694, 1998.
[107]M. Kim et al., "Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet," vol. 171, no. 1-3, pp. 312-316, 2003.
[108]O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van de Leest, C. J. S. Leys, and C. technology, "Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation," vol. 142, pp. 474-481, 2001.
[109]M. Kuchenbecker, N. Bibinov, A. Kaemlimg, D. Wandke, P. Awakowicz, and W. J. J. o. P. D. A. P. Viöl, "Characterization of DBD plasma source for biomedical applications," vol. 42, no. 4, p. 045212, 2009.
[110]P. Rajasekaran et al., "Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: investigation through plasma characterization and simulation of surface irradiation," vol. 7, no. 8, pp. 665-675, 2010.
[111]N. Bibinov, D. Dudek, P. Awakowicz, and J. J. J. o. P. D. A. P. Engemann, "Characterization of an atmospheric pressure dc plasma jet," vol. 40, no. 23, p. 7372, 2007.
[112]M. Laroussi and X. J. A. P. L. Lu, "Room-temperature atmospheric pressure plasma plume for biomedical applications," vol. 87, no. 11, p. 113902, 2005.
[113]G. Park et al., "Atmospheric-pressure plasma sources for biomedical applications," vol. 21, no. 4, p. 043001, 2012.
[114]S. Lerouge, M. Wertheimer, Y. J. P. L'H, and Polymers, "Plasma sterilization: a review of parameters, mechanisms, and limitations," vol. 6, no. 3, pp. 175-188, 2001.
[115]M. A. Bogle, K. A. Arndt, and J. S. J. A. o. d. Dover, "Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation," vol. 143, no. 2, pp. 168-174, 2007.
[116]J. Raiser and M. J. J. o. P. D. A. P. Zenker, "Argon plasma coagulation for open surgical and endoscopic applications: state of the art," vol. 39, no. 16, p. 3520, 2006.
[117]H. Fakhouri, D. B. Salem, O. Carton, J. Pulpytel, and F. J. J. o. P. D. A. P. Arefi-Khonsari, "Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor," vol. 47, no. 26, p. 265301, 2014.
[118]H. Fakhouri et al., "Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering," vol. 144, pp. 12-21, 2014.
[119]P. Zhao, W. Zheng, J. Watanabe, Y. D. Meng, M. J. P. P. Nagatsu, and Polymers, "Highly Conductive Cu Thin Film Deposition on Polyimide by RF‐Driven Atmospheric Pressure Plasma Jets under Nitrogen Atmosphere," vol. 12, no. 5, pp. 431-438, 2015.
[120]林煒翔, "常壓電將製程用於封裝裸銅版低溫還原技術之研究," 國立台灣科技大學, 2020.
[121]R. Ghasemi and H. J. C. I. Vakilifard, "Plasma-sprayed nanostructured YSZ thermal barrier coatings: thermal insulation capability and adhesion strength," vol. 43, no. 12, pp. 8556-8563, 2017.
[122]J. G. Odhiambo, W. Li, Y. Zhao, and C. J. C. Li, "Porosity and its significance in plasma-sprayed coatings," vol. 9, no. 7, p. 460, 2019.
[123]T. S. t. F.S. Technologies, SprayTech, (2016).
[124]"OES技術於電漿製程監測之應用," 材料世界網, 2004.
[125]奇. A. http://gieoptics.com/big5/product_01_03.php.
[126]B. L. Dutrow, C. M. J. G. I. Clark, and Analysis, "X-ray powder diffraction (XRD)," pp. 1-2, 2012.
[127]L. Whittig, W. J. M. o. S. A. P. P. Allardice, and M. Methods, "X‐ray diffraction techniques," vol. 5, pp. 331-362, 1986.
[128]H. J. J. o. A. P. Leamy, "Charge collection scanning electron microscopy," vol. 53, no. 6, pp. R51-R80, 1982.
[129]A. J. S. N. B. N. C. f. B. S. Mukhopadhyay, Guwahati, "Measurement of magnetic hysteresis loops in continuous and patterned ferromagnetic nanostructures by static magneto-optical kerr effect magnetometer," 2015.
[130]"MalvernPanalytical,Available:https://www.dksh.com/globalen/products/ins/malvernpanalytical-epsilon1."
[131]I. Denysenko, S. Xu, J. Long, P. Rutkevych, N. Azarenkov, and K. J. J. o. a. p. Ostrikov, "Inductively coupled Ar/CH 4/H 2 plasmas for low-temperature deposition of ordered carbon nanostructures," vol. 95, no. 5, pp. 2713-2724, 2004.
[132]A. A. Mohammed, Z. T. Khodair, and A. A. J. C. D. C. Khadom, "Preparation and investigation of the structural properties of α-Al2O3 nanoparticles using the sol-gel method," vol. 29, p. 100531, 2020.
[133]M. Köroğlu, B. Ebin, S. Stopic, S. Gürmen, and B. J. M. Friedrich, "One Step Production of Silver-Copper (AgCu) Nanoparticles," vol. 11, no. 9, p. 1466, 2021.
[134]A. A. S. D. Afiati, "常壓電漿系統驅動金屬氧化物成型之研究," 2019.

無法下載圖示 全文公開日期 2025/01/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE