簡易檢索 / 詳目顯示

研究生: 陳妍蓓
Yen-Pei Chen
論文名稱: 丙烯腈/丙烯酸異辛酯共聚高分子應用於液態鋰離子電池之鋰金屬負極塗層藉以提升循環穩定性
Acrylonitrile/2-Ethylhexyl Acrylate Copolymer Applied to Lithium Metal Anode Coating of Liquid Lithium-ion Batteries to Enhance Cycling Stability
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
許榮木
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 液態鋰金屬電池鋰金屬負極鋰晶枝負極保護塗層丙烯腈共聚物
外文關鍵詞: Lithium-ion battery, lithium metal anode, lithium dendrites, protective coating layer, acrylonitrile-based copolymer
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 第一章 緒論 1 1-1前言 1 1-2研究背景 5 1-2-1鋰離子電池研發歷程 5 1-2-2鋰離子電池工作原理 6 1-2-3正極(陰極)材料 7 1-2-4負極(陽極)材料 11 1-2-5隔離膜 14 1-2-6電解液 15 1-3研究動機 18 第二章 文獻回顧 19 2-1固態電解質界面(Solid Electrolyte Interface (SEI)) 19 2-2鋰金屬負極的保護塗層 20 2-3人工保護塗層生成技術 23 2-3-1化學或電化學的原位預處理技術 23 2-3-2非原位塗層或中間層之生成技術 24 2-4高分子塗層 26 2-5聚丙烯腈(Polyacrylonitrile, PAN) 28 2-6 丙烯酸異辛酯(2-ethylhexyl acrylate (2-EHA)) 30 2-7硝酸鋰(Lithium nitrate (LiNO3)) 32 2-8自由基聚合反應(Free radical polymerization)機制 35 第三章 實驗藥品、儀器與樣品製備 36 3-1實驗藥品 36 3-2實驗儀器 37 3-3實驗樣品製備 38 3-3-1高分子負極塗層合成 38 3-3-2 GPC樣品製備 39 3-3-3 FTIR樣品製備 39 3-3-4 NMR樣品製備 39 3-3-5離子電導度樣品製備 39 3-3-6鋰金屬對稱式電池製備 40 3-3-7正極漿料製備 41 3-3-8正極製備 41 3-3-9含高分子塗層負極製備 42 3-3-10鈕扣型電池(coin cell)組裝 43 3-3-11各種電池組裝示意圖 45 第四章 實驗結果與討論 46 4-1凝膠滲透層析儀(GPC)分析 46 4-2傅立葉轉換紅外光譜儀(FTIR)分析 48 4-3核磁共振(NMR)分析 50 4-4高分子於液態電解液溶解度測試 52 4-5離子電導度(ionic conductivity)檢測 55 4-6含塗層鋰金屬負極的液態鋰離子電池之循環測試 58 4-6-1鋰金屬負極塗層厚度的效應 58 4-6-2鋰金屬負極塗層的LiNO3含量的效應 60 4-6-3 0.05wt% PE8+LiNO3、Blank和Benchmark之充放電循環壽命測試 63 4-6-4庫倫效率(coulombic efficiency) 67 4-7電化學阻抗分析(EIS) 69 4-7-1充放電循環前電化學阻抗分析 69 4-7-2長效充放電循環後電化學阻抗分析 71 4-8 PE8塗層於鋰金屬負極之界面穩定性 73 4-9鋰離子擴散係數計算與分析 78 4-10電池倍率性能測試 80 4-11循環伏安法(CV) 82 4-12鋰金屬保護塗層SEM分析 84 第五章 結論 90 參考文獻 91

    [1] S. Nalley, A. LaRose, and U.S. Energy Information Administration. "INTERNATIONAL ENERGY OUTLOOK 2021."
    [2] Y. Ding, Z. P. Cano, A. Yu, J. Lu, and Z. Chen, "Automotive Li-Ion Batteries: Current Status and Future Perspectives," Electrochemical Energy Reviews, vol. 2, no. 1, pp. 1-28, 2019, doi: 10.1007/s41918-018-0022-z.
    [3] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, Sep 2009, doi: 10.1039/b820555h.
    [4] Y. Liang et al., "A review of rechargeable batteries for portable electronic devices," InfoMat, vol. 1, no. 1, pp. 6-32, 2019, doi: 10.1002/inf2.12000.
    [5] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon nanotubes for lithium ion batteries," Energy & Environmental Science, vol. 2, no. 6, 2009, doi: 10.1039/b904116h.
    [6] T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, "Lithium-ion batteries: outlook on present, future, and hybridized technologies," Journal of Materials Chemistry A, vol. 7, no. 7, pp. 2942-2964, 2019, doi: 10.1039/c8ta10513h.
    [7] S. Choi and G. Wang, "Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives," Advanced Materials Technologies, vol. 3, no. 9, 2018, doi: 10.1002/admt.201700376.
    [8] G. Xu, L. Huang, C. Lu, X. Zhou, and G. Cui, "Revealing the multilevel thermal safety of lithium batteries," Energy Storage Materials, vol. 31, pp. 72-86, 2020, doi: 10.1016/j.ensm.2020.06.004.
    [9] D. Lisbona and T. Snee, "A review of hazards associated with primary lithium and lithium-ion batteries," Process Safety and Environmental Protection, vol. 89, no. 6, pp. 434-442, 2011, doi: 10.1016/j.psep.2011.06.022.
    [10] A. Eftekhari, "Lithium Batteries for Electric Vehicles: From Economy to Research Strategy," ACS Sustainable Chemistry & Engineering, vol. 7, no. 6, pp. 5602-5613, 2019, doi: 10.1021/acssuschemeng.8b01494.
    [11] R. A. Meyers, Encyclopedia of Sustainability Science and Technology. 2012.
    [12] C. Julien, A. Mauger, A. Vijh, and K. Zaghib, "Lithium Batteries," in Lithium Batteries, 2016, ch. Chapter 2, pp. 29-68.
    [13] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LixCoO2 - A new cathode material for batteries of high energy density," 1980.
    [14] Royal Swedish Academy of Sciences. "The Nobel Prize in Chemistry 2019."
    [15] A. B. Gallo, J. R. Simões-Moreira, H. K. M. Costa, M. M. Santos, and E. Moutinho dos Santos, "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, vol. 65, pp. 800-822, 2016, doi: 10.1016/j.rser.2016.07.028.
    [16] M. S. Islam and C. A. Fisher, "Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties," Chem Soc Rev, vol. 43, no. 1, pp. 185-204, Jan 7 2014, doi: 10.1039/c3cs60199d.
    [17] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015, doi: 10.1016/j.mattod.2014.10.040.
    [18] T. Ohzuku, A. Ueda, and M. Kouguchi, "Synthesis and Characterization of LiAl1- 4Ni3- 4 O 2    (  R bar 3m )  for Lithium‐Ion (Shuttlecock) Batteries," 1995.
    [19] K. K. Lee, W. S. Yoon, K. B. Kim, K. Y. Lee, and S. T. Hong, "Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries," 2001.
    [20] F. Wu, J. Maier, and Y. Yu, "Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries," Chem Soc Rev, vol. 49, no. 5, pp. 1569-1614, Mar 7 2020, doi: 10.1039/c7cs00863e.
    [21] W. Li, E. M. Erickson, and A. Manthiram, "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, vol. 5, no. 1, pp. 26-34, 2020, doi: 10.1038/s41560-019-0513-0.
    [22] T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, "The Current Move of Lithium Ion Batteries Towards the Next Phase," Advanced Energy Materials, vol. 2, no. 7, pp. 860-872, 2012, doi: 10.1002/aenm.201200028.
    [23] R. Chu et al., "Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research," Energies, vol. 15, no. 23, 2022, doi: 10.3390/en15239235.
    [24] W. Liu et al., "Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries," Angew Chem Int Ed Engl, vol. 54, no. 15, pp. 4440-57, Apr 7 2015, doi: 10.1002/anie.201409262.
    [25] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter, "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, vol. 3, no. 4, pp. 267-278, 2018, doi: 10.1038/s41560-018-0107-2.
    [26] G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, vol. 89, pp. 292-308, 2018, doi: 10.1016/j.rser.2018.03.002.
    [27] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries," 1997.
    [28] M. S. Whittingham, "Lithium Batteries and Cathode Materials," 2004.
    [29] P. Roy and S. K. Srivastava, "Nanostructured anode materials for lithium ion batteries," Journal of Materials Chemistry A, vol. 3, no. 6, pp. 2454-2484, 2015, doi: 10.1039/c4ta04980b.
    [30] N. Nitta and G. Yushin, "High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles," Particle & Particle Systems Characterization, vol. 31, no. 3, pp. 317-336, 2014, doi: 10.1002/ppsc.201300231.
    [31] F. Wu and G. Yushin, "Conversion cathodes for rechargeable lithium and lithium-ion batteries," Energy & Environmental Science, vol. 10, no. 2, pp. 435-459, 2017, doi: 10.1039/c6ee02326f.
    [32] Y. B. He et al., "Gassing in Li(4)Ti(5)O(12)-based batteries and its remedy," Sci Rep, vol. 2, p. 913, 2012, doi: 10.1038/srep00913.
    [33] H. Cheng, J. G. Shapter, Y. Li, and G. Gao, "Recent progress of advanced anode materials of lithium-ion batteries," Journal of Energy Chemistry, vol. 57, pp. 451-468, 2021, doi: 10.1016/j.jechem.2020.08.056.
    [34] M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, "Brief History of Early Lithium-Battery Development," Materials (Basel), vol. 13, no. 8, Apr 17 2020, doi: 10.3390/ma13081884.
    [35] P. Arora and Z. J. Zhang, "Battery Separators," 2004.
    [36] Q.-T. Pham and C.-S. Chern, "Applications of polymers in lithium-ion batteries with enhanced safety and cycle life," Journal of Polymer Research, vol. 29, no. 4, 2022, doi: 10.1007/s10965-022-02946-2.
    [37] X. Huang, "Separator technologies for lithium-ion batteries," Journal of Solid State Electrochemistry, vol. 15, no. 4, pp. 649-662, 2010, doi: 10.1007/s10008-010-1264-9.
    [38] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, no. 9, 2011, doi: 10.1039/c1ee01598b.
    [39] D. Aurbach et al., "Design of electrolyte solutions for Li and Li-ion batteries: a review," Electrochimica Acta, vol. 50, no. 2-3, pp. 247-254, 2004, doi: 10.1016/j.electacta.2004.01.090.
    [40] 陳祐頎, 吳昱賢, and 張家欽. "鋰離子電池電解質─鋰離子傳遞的橋梁."
    [41] Q. Pan, D. Gong, and Y. Tang, "Recent progress and perspective on electrolytes for sodium/potassium-based devices," Energy Storage Materials, vol. 31, pp. 328-343, 2020, doi: 10.1016/j.ensm.2020.06.025.
    [42] R. C. Agrawal and G. P. Pandey, "Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview," Journal of Physics D: Applied Physics, vol. 41, no. 22, 2008, doi: 10.1088/0022-3727/41/22/223001.
    [43] R. HAGIWARA and J. S. LEE, "Ionic Liquids for Electrochemical Devices," 2007.
    [44] J. Liu et al., "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, vol. 4, no. 3, pp. 180-186, 2019, doi: 10.1038/s41560-019-0338-x.
    [45] H. Zhou, S. Yu, H. Liu, and P. Liu, "Protective coatings for lithium metal anodes: Recent progress and future perspectives," Journal of Power Sources, vol. 450, 2020, doi: 10.1016/j.jpowsour.2019.227632.
    [46] K. Brandt, "Historical development of secondary lithium batteries," 1994.
    [47] B. Scrosati, "History of lithium batteries," Journal of Solid State Electrochemistry, vol. 15, no. 7-8, pp. 1623-1630, 2011, doi: 10.1007/s10008-011-1386-8.
    [48] M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, vol. 1, no. 9, 2016, doi: 10.1038/nenergy.2016.114.
    [49] D. Lin, Y. Liu, and Y. Cui, "Reviving the lithium metal anode for high-energy batteries," Nat Nanotechnol, vol. 12, no. 3, pp. 194-206, Mar 7 2017, doi: 10.1038/nnano.2017.16.
    [50] Q. Cheng et al., "Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy," Nat Commun, vol. 9, no. 1, p. 2942, Jul 30 2018, doi: 10.1038/s41467-018-05289-z.
    [51] R. Xu et al., "Artificial Interphases for Highly Stable Lithium Metal Anode," Matter, vol. 1, no. 2, pp. 317-344, 2019, doi: 10.1016/j.matt.2019.05.016.
    [52] C. Monroe and J. Newman, "C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics," 2005, doi: 10.1149/1.1850854.
    [53] Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, and Y. Cui, "Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode," Nat Commun, vol. 7, p. 10992, Mar 18 2016, doi: 10.1038/ncomms10992.
    [54] C. Yan et al., "Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition," Adv Mater, vol. 30, no. 25, p. e1707629, Jun 2018, doi: 10.1002/adma.201707629.
    [55] Q. C. Liu et al., "Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries," Adv Mater, vol. 27, no. 35, pp. 5241-7, Sep 16 2015, doi: 10.1002/adma.201501490.
    [56] Y. Guo, H. Li, and T. Zhai, "Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries," Adv Mater, vol. 29, no. 29, Aug 2017, doi: 10.1002/adma.201700007.
    [57] Y. Liu et al., "An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes," Adv Mater, vol. 29, no. 10, Mar 2017, doi: 10.1002/adma.201605531.
    [58] S. Guo et al., "PVDF-HFP/LiF Composite Interfacial Film to Enhance the Stability of Li-Metal Anodes," ACS Applied Energy Materials, vol. 3, no. 7, pp. 7191-7199, 2020, doi: 10.1021/acsaem.0c01232.
    [59] R. Lu et al., "PVDF-HFP layer with high porosity and polarity for high-performance lithium metal anodes in both ether and carbonate electrolytes," Nano Energy, vol. 95, 2022, doi: 10.1016/j.nanoen.2022.107009.
    [60] I. C. Jang, S. Ida, and T. Ishihara, "Surface Coating Layer on Li Metal for Increased Cycle Stability of Li–O2Batteries," Journal of The Electrochemical Society, vol. 161, no. 5, pp. A821-A826, 2014, doi: 10.1149/2.087405jes.
    [61] P. Chen et al., "An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries," Adv Sci (Weinh), vol. 8, no. 11, p. e2100309, Jun 2021, doi: 10.1002/advs.202100309.
    [62] J. Bae, Y. Qian, Y. Li, X. Zhou, J. B. Goodenough, and G. Yu, "Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries," Energy & Environmental Science, vol. 12, no. 11, pp. 3319-3327, 2019, doi: 10.1039/c9ee02558h.
    [63] Q. T. Pham, Y. H. Jheng, D. S. Tsai, J. Y. Lai, C. C. Hu, and C. S. Chern, "Solid acrylonitrile‐based copolymer electrolytes and their potential application in solid state battery," Journal of Applied Polymer Science, vol. 139, no. 20, 2022, doi: 10.1002/app.52158.
    [64] Y. Liu et al., "Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode," Nat Commun, vol. 9, no. 1, p. 3656, Sep 7 2018, doi: 10.1038/s41467-018-06077-5.
    [65] C. Yan et al., "Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries," Angew Chem Int Ed Engl, vol. 57, no. 43, pp. 14055-14059, Oct 22 2018, doi: 10.1002/anie.201807034.
    [66] Z. Hu et al., "Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes," Chemistry of Materials, vol. 29, no. 11, pp. 4682-4689, 2017, doi: 10.1021/acs.chemmater.7b00091.
    [67] D. Colombani, "Chain-growth control in free radical polymerization," 1997.
    [68] D. J. Aaserud, L. Prokai, and W. J. Simonsick, "Gel Permeation Chromatography Coupled to Fourier Transform Mass Spectrometry for Polymer Characterization," 1999.
    [69] T. Williams, "Gel Permeation Chromatography: A Review," 1970.
    [70] C. Wang, W. Wang, L. Zhang, S. Zhong, and D. Yu, "Electrospinning of PAN/Ag NPs nanofiber membrane with antibacterial properties," Journal of Materials Research, vol. 34, no. 10, pp. 1669-1677, 2019, doi: 10.1557/jmr.2019.44.
    [71] I. Karbownik, O. Rac-Rumijowska, M. Fiedot-Tobola, T. Rybicki, and H. Teterycz, "The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers," Materials (Basel), vol. 12, no. 4, Feb 22 2019, doi: 10.3390/ma12040664.
    [72] M. H. El-Newehy, A. Alamri, and S. S. Al-Deyab, "Optimization of amine-terminated polyacrylonitrile synthesis and characterization," Arabian Journal of Chemistry, vol. 7, no. 2, pp. 235-241, 2014, doi: 10.1016/j.arabjc.2012.04.041.
    [73] D. Zhou et al., "In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries," Advanced Energy Materials, vol. 5, no. 15, 2015, doi: 10.1002/aenm.201500353.
    [74] Merck. "IR Spectrum Table."
    [75] J. U. Izunobi and C. L. Higginbotham, "Polymer Molecular Weight Analysis by 1H NMR Spectroscopy," Journal of Chemical Education, vol. 88, no. 8, pp. 1098-1104, 2011, doi: 10.1021/ed100461v.
    [76] M. Andreis and J. L. Koenig, "Application of NMR to Crosslinked Polymer Systems," 2005.
    [77] A. F. M. BARTON, "Solubility Parameters," 1975.
    [78] M. Dounya, U. Maschke, N. Bouchikhi, H. Ziani Chérif, and L. Bedjaoui-Alachaher, "Characterization of swelling behavior and elastomer properties of acrylate polymers containing 2-ethylhexyl and isobornyl esters," Polymer Bulletin, 2022, doi: 10.1007/s00289-022-04491-w.
    [79] D. T. Hallinan and N. P. Balsara, "Polymer Electrolytes," Annual Review of Materials Research, vol. 43, no. 1, pp. 503-525, 2013, doi: 10.1146/annurev-matsci-071312-121705.
    [80] K. Liu et al., "Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer," J Am Chem Soc, vol. 139, no. 13, pp. 4815-4820, Apr 5 2017, doi: 10.1021/jacs.6b13314.
    [81] W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, "Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries," Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 1-13, 2020, doi: 10.33961/jecst.2019.00528.
    [82] R. Deivanayagam and R. Shahbazian‐Yassar, "Electrochemical Methods and Protocols for Characterization of Ceramic and Polymer Electrolytes for Rechargeable Batteries," Batteries & Supercaps, vol. 4, no. 4, pp. 596-606, 2021, doi: 10.1002/batt.202000221.
    [83] J. Xiao et al., "Understanding and applying coulombic efficiency in lithium metal batteries," Nature Energy, vol. 5, no. 8, pp. 561-568, 2020, doi: 10.1038/s41560-020-0648-z.
    [84] J. Zhao, L. Wang, X. He, C. Wan, and C. Jiang, "Kinetic Investigation of LiCoO2 by Electrochemical Impedance," 2010.
    [85] Z. Geng, Y.-C. Chien, M. J. Lacey, T. Thiringer, and D. Brandell, "Validity of solid-state Li+ diffusion coefficient estimation by electrochemical approaches for lithium-ion batteries," Electrochimica Acta, vol. 404, 2022, doi: 10.1016/j.electacta.2021.139727.
    [86] B. Azhar, Q.-T. Pham, M. Afiandika, and C.-S. Chern, "Polymers with Cyanoethyl Ether and Propanesulfonate Ether Side Chains for Solid-State Li-Ion Battery Applications," ACS Applied Energy Materials, vol. 6, no. 6, pp. 3525-3537, 2023, doi: 10.1021/acsaem.3c00154.
    [87] P. T. Kissinger and W. R. Heineman, "Cyclic Voltammetry," 1983, doi: 10.1021/ed060p702‚.

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 2025/08/20 (校外網路)
    全文公開日期 2025/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE