簡易檢索 / 詳目顯示

研究生: 棚次悠介
Yusuke - Tanatsugu
論文名稱: 金屬玻璃薄膜應用於醫用針頭之性質提升研究
Preparation and Characterization of Thin Film Metallic Glass Coated Medical Needle for Property Improvements
指導教授: 朱瑾
Jinn P. Chu
口試委員: 徐慶琪
Ching-Chi Hsu
李志偉
Jyh-Wei Lee
鄭憲清
Jason Shian-Ching Jang
陳明仁
Ming-Jen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 106
中文關鍵詞: 金屬玻璃薄膜醫用針頭摩擦係數
外文關鍵詞: Thin film metallic glass, Medical needle, coefficient of friction
相關次數: 點閱:304下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針頭是醫療裝置中最為普遍被使用的。近年來,細小的注射針易取得且病人接受度高,使得於個人醫療使用上這類的針頭越來越受歡迎,然而,許多病人在針頭注射時會感受到疼痛,因此,在針頭的設計及注射方法已被研究進而達到無疼痛感的注射,但僅有鮮少報告研究鍍層於針頭上的影響,因為鍍層將會直接影響到針頭的性能。金屬玻璃由於其無序的原子排列結構,因此擁有許多獨特的性質,如高強度、高韌性、好的抗腐蝕能力及抗磨耗能力,所以金屬玻璃於醫療應用上有很大的潛力。在本研究中,鋯基金屬玻璃(Zr53Cu33Al9Ta5)薄膜沉積在醫用針頭上,同時也製備氮化鈦和鈦鍍層作比較。接著,我們將針頭於仿生材料,如聚氨基甲酸乙酯橡膠塊和豬肉中進行定速的穿刺試驗,進而測量出針頭插入時所需的荷重和拔除時所造成的滑動摩擦力。從實驗結果得知,鍍有金屬玻璃薄膜的針頭於聚氨基甲酸乙酯橡膠塊穿刺中插入及拔除時所需要的力量分別可降低約66%和72%。此外,經過10次重覆性穿刺後,穿刺所需的力量僅有輕微的增加,其表示出它具有良好的耐久度。根據奈米刮痕試驗結果,可以知道金屬玻璃薄膜具有較低的摩擦係數(0.07 ± 0.03),且低於其他鍍層摩擦係數的一半。此結果對於針頭的性能扮演著重要的角色。金屬玻璃薄膜具有較低的摩擦係數是歸因於無晶界的存在、表面平滑、較好的疏水性。因此,鍍有金屬玻璃薄膜的針頭將不僅是應用於一次性使用,也可以應用在縫合皮膚用的縫合針連續使用。


    Needle is one of the most common medical devices used in many situations. In recent years, fine needles are becoming popular for personal use and medical service because of high patient acceptability and accessibility. However, many patients are still suffering from pain associated with the needle injection. Thus, needle tip design and injection methods have been studied to achieve painless injection, while few reports are available on the needle coating, although it is expected to directly affect needle performance. Metallic glasses have been known for their unique properties such as high strength, high toughness, good corrosion and wear resistances because of the disordered atomic structure. These materials are thus potentially useful for the medical application. In this work, Zr-based (Zr53Cu33Al9Ta5) thin film metallic glass (TFMG) coated medical needles were prepared. TiN and Ti coatings were also introduced for comparison. Then, we measured the insertion and retraction forces when needles were inserted into phantom materials including polyurethane rubber block and pork muscle and retracted at constant velocity. For example, TFMG-coated needle reduced ~66% and ~72% of insertion and retraction forces, respectively, during testing against polyurethane rubber block. In addition, there were only slight increases in both forces even after being tested for 10 times, indicating the good durability. According to the result of nano-scratch test, TFMG coating exhibited low value (0.07 ± 0.03) of the coefficient friction (COF), which was less than half of other coatings. This must be playing an important role in needle performance. Several factors such as the absence of grain boundary, smooth surface and sufficient wettability due to TFMG coating are thought to result in low COF. Therefore, TFMG-coated needle would be expected to work effectively not only for one time use, but also for continuous uses such as suture needle for sewing skin.

    摘要 Abstract Acknowledgement List of Figures List of Tables Chapter 1 Introduction Chapter 2 Literature review 2.1 Characteristic of hypodermic needle 2.2 Unfavorable issues caused by needle insertion 2.3 Needle insertion phases 2.4 Influence of needle features on required forces 2.4.1 Diameter 2.4.2 Needle insertion velocity 2.4.3 Lubricant 2.4.4 Sharpness and surface roughness 2.5 Development of fine needles 2.5.1 Insulin pen needle 2.5.2 Dental local anesthetic needle 2.6 Surface modification of medical needles 2.7 Thin film metallic glasses (TFMGs) 2.7.1 Smooth surface 2.7.2 Hardness 2.8 TFMGs application in biomedical field 2.8.1 Antimicrobial property 2.8.2 Sharpness improvement of medical blade 2.8.3 Biocompatibility 2.9 Physical vapor deposition Chapter 3 Experimental procedure 3.1 Substrate preparation 3.2 Thin film metallic glass deposition 3.3 Other thin film depositions for comparison study 3.4 Material characterizations 3.4.1 Chemical analysis 3.4.2 Thermal analysis 3.4.3 Crystallographic analysis 3.4.4 Microstructure analysis 3.4.5 Surface roughness analysis 3.4.6 Insertion and retraction test 3.4.7 Nano-scratch test 3.4.8 Contact angle and surface free energy measurement Chapter 4 Results and Discussion 4.1 Chemical analysis 4.2 Thermal analysis 4.3 Crystallographic analysis 4.4 Microstructure analysis 4.4.1 Before film deposition 4.4.2 After film deposition 4.4.3 After insertion and retraction test 4.5 Surface roughness analysis 4.6 Insertion and retraction test 4.6.1 Polyurethane rubber block 4.6.2 Pork muscle 4.7 Nano-scratch test 4.8 Contact angle and surface free energy measurement Chapter 5 Conclusions and Future Works 5.1 Conclusions 5.2 Future works References Appendix

    [1] N. Abolhassani, R. Patel, M. Moallem, Med. Eng. Phys., 29 (2007) 413-431.
    [2] D.J. van Gerwen, J. Dankelman, J.J. van den Dobbelsteen, Med. Eng. Phys., 34
    (2012) 665-680.
    [3] R. Aronson, Diabetes technology & therapeutics, 14 (2012) 741-747.
    [4] H. Hemmingsen, M. Niemeyer, M.R. Hansen, D. Bucher, N.B. Thomsen, Diabetes technology & therapeutics, 13 (2011) 1207-1211.
    [5] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S.C. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Thin Solid Films, 561 (2014) 102-107.
    [6] R.E. Kravetz, The American journal of gastroenterology, 100 (2005) 2614.
    [7] A.M. Hauri, G.L. Armstrong, Y.J. Hutin, International journal of STD & AIDS, 15 (2004) 7-16.
    [8] P.D. Harvinder S. Gill, 1, P.D. and Mark R. Prausnitz, 2, Journal of Diabetes Science and Technology, Volume 1 (2007).
    [9] B. Deacon, J. Abramowitz, Journal of Anxiety Disorders, 20 (2006) 946-960.
    [10] Y. Nir, A. Paz, E. Sabo, I. Potasman, The American journal of tropical medicine and hygiene, 68 (2003) 341-344.
    [11] L. Yim, Australian family physician, 35 (2006) 623-624.
    [12] I. Berlin, J.C. Bisserbe, R. Eiber, N. Balssa, C. Sachon, F. Bosquet, A. Grimaldi, Diabetes Care, 20 (1997) 176-178.
    [13] J.T. Hing, A.D. Brooks, J.P. Desai, Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 619-624.
    [14] J.T. Stellman, Presented to the Georgia Institute of Technology for the Degree Master of Science in Mechanical Engineering, 2009., (2009).
    [15] J.S. Pulido, M.E. Zobitz, K.N. An, Eye, 21 (2007) 1210-1211.
    [16] A.M. Okamura, C. Simone, M.D. O'Leary, Biomedical Engineering, IEEE Transactions on, 51 (2004) 1707-1716.
    [17] O.A. Shergold, N.A. Fleck, Journal of biomechanical engineering, 127 (2005) 838-848.
    [18] S.P. DiMaio, S.E. Salcudean, IEEE Trans. Robot. Autom., 19 (2003) 864-875.
    [19] J. Crouch, C. Schneider, J. Wainer, A. Okamura, A Velocity-Dependent Model for Needle Insertion in Soft Tissue, in: J. Duncan, G. Gerig (Eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Springer Berlin Heidelberg, 2005, pp. 624-632.
    [20] W.L.M.e. al, The Journal of Emergency Medicine, Vol 13 (1995) pp 515-518.
    [21] O. Alghurair, A. Remnev, K. Nagato, S. Ikeshima, O. Yasunori, K. Uemura, M. Nakao, Procedia CIRP, 5 (2013) 53-56.
    [22] L.D. Chantelau E, Hemmann DM, Zipfel U, Echterhoff S., Br Med J, 303 (1991) 26-27.
    [23] P. Han, D. Che, K. Pallav, K. Ehmann, International Journal of Mechanical Sciences, 65 (2012) 157-167.
    [24] M.D. Laurence Hirsch, Michael Gibney, R.N., Julie Berube, Ph.D., John Manocchio, M.S., Volume 6 (March 2012).
    [25] Y.C. Wang, R.K. Chen, B.L. Tai, P.W. McLaughlin, A.J. Shih, Med. Eng. Phys., 36 (2014) 1093-1100.
    [26] Y. Wang, B.L. Tai, R.K. Chen, A.J. Shih, Journal of Manufacturing Science and Engineering, 135 (2013) 041010-041010.
    [27] R.A.e. al, US Endocrinology 9(2) (2013) 114-118.
    [28] n. nordisk.
    [29] T.L. Pearson, Journal of Diabetes Science and Technology, 4 (2010) 522-531.
    [30] L.J. Hirsch, M.A. Gibney, J. Albanese, S. Qu, K. Kassler-Taub, L.J. Klaff, T.S. Bailey, Current medical research and opinion, 26 (2010) 1531-1541.
    [31] R.M. Cuddihy, S.K. Borgman, Am. J. Ther., 20 (2013) 694-702.
    [32] M. Krochak, N. Friedman, Compendium of continuing education in dentistry (Jamesburg, N.J. : 1995), 19 (1998) 137-140, 142-133, 146 passim; quiz 150.
    [33] R. Lehtinen, International journal of oral surgery, 12 (1983) 444-445.
    [34] T. Flanagan, M.J. Wahl, M.M. Schmitt, J.A. Wahl, General dentistry, 55 (2007) 216-217.
    [35] N. Fuller, R. Menke, W. Meyers, The Journal of the American Dental Association, 99 (1979) 822-824.
    [36] D. Ram, L. Hermida B, E. Amir, International Journal of Paediatric Dentistry, 17 (2007) 383-387.
    [37] S.F. Malamed, K. Reed, S. Poorsattar, Dental Clinics of North America, 54 (2010) 745-756.
    [38] H. Fukuda, Y. Inokuti, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71B (2004) 392-397.
    [39] X. Qi, W. Song, Z. Mao, W.R. Gao, Q. Cong, J. Bionic Eng., 10 (2013) 377-382.
    [40] W. Klement, R.H. Willens, P.O.L. Duwez, Nature, 187 (1960) 869-870.
    [41] A. Inoue, Acta Mater., 48 (2000) 279-306.
    [42] A. Inoue, A. Takeuchi, Acta Mater., 59 (2011) 2243-2267.
    [43] J.P. Chu, C.L. Chiang, H. Wijaya, R.T. Huang, C.W. Wu, B. Zhang, W.H. Wang, T.G. Nieh, Scripta Materialia, 55 (2006) 227-230.
    [44] A. Inoue, A. Takeuchi, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 375 (2004) 16-30.
    [45] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Surface and Coatings Technology, 205 (2011) 4030-4034.
    [46] A.T. Negussie, W. Diyatmika, J.P. Chu, Y.L. Shen, J.S.C. Jang, C.H. Hsueh, Journal of Alloys and Compounds, 613 (2014) 157-163.
    [47] B. Yang, C.T. Liu, T.G. Nieh, Applied Physics Letters, 88 (2006) -.
    [48] J.-H. Chu, H.-W. Chen, Y.-C. Chan, J.-G. Duh, J.-W. Lee, J.S.-C. Jang, Thin Solid Films, 561 (2014) 38-42.
    [49] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films, 520 (2012) 5097-5122.
    [50] F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw, Surface and Coatings Technology, 203 (2009) 3480-3484.
    [51] J.-W. Lee, Y.-C. Kuo, C.-J. Wang, L.-C. Chang, K.-T. Liu, Surface and Coatings Technology, 203 (2008) 721-725.
    [52] J. Gerth, U. Wiklund, Wear, 264 (2008) 885-892.
    [53] H.-W. Chen, K.-C. Hsu, Y.-C. Chan, J.-G. Duh, J.-W. Lee, J.S.-C. Jang, G.-J. Chen, Thin Solid Films, 561 (2014) 98-101.
    [54] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res., 52 (2000) 662-668.
    [55] M. Rai, A. Yadav, A. Gade, Biotechnology advances, 27 (2009) 76-83.
    [56] Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, P.Y. Xiong, Thin Solid Films, 492 (2005) 93-100.
    [57] Y.-H. Kim, Y.-r. Choi, K.-M. Kim, S.-Y. Choi, Applied Surface Science, 258 (2012) 3823-3828.
    [58] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics, 31 (2012) 127-131.
    [59] N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka, M. Esashi, Journal of biomedical materials research. Part B, Applied biomaterials, 102 (2014) 1544-1552.
    [60] A. Rockett, Physical Vapor Deposition, The Materials Science of Semiconductors, Springer US, 2008, pp. 505-572.
    [61] D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci., 13 (1969) 1741-1747.
    [62] A.C. Steele, M.J. German, J. Haas, G. Lambert, J.G. Meechan, Journal of dentistry, 41 (2013) 164-169.
    [63] J.T. Hing, A.D. Brooks, J.P. Desai, Medical Image Analysis, 11 (2007) 62-78.
    [64] M.Z. Ma, H.T. Zong, H.Y. Wang, W.G. Zhang, A.J. Song, S.X. Liang, Q. Wang, X.Y. Zhang, Q. Jing, G. Li, R.P. Liu, Mater. Lett., 62 (2008) 4348-4350.
    [65] P.J. Blau, Wear, 250 (2001) 431-434.
    [66] Z. Parlar, M. Bakkal, A.J. Shih, Intermetallics, 16 (2008) 34-41.
    [67] R. Mishra, B. Basu, R. Balasubramaniam, Materials Science and Engineering: A, 373 (2004) 370-373.
    [68] F. Svahn, A. Kassman-Rudolphi, E. Wallen, Wear, 254 (2003) 1092-1098.
    [69] R.A. Al-Samarai, Journal of Surface Engineered Materials and Advanced Technology, 02 (2012) 167-173.
    [70] M. Ali, E. Hamzah, M. Radzi Toff, Industrial Lubrication and Tribology, 60 (2008) 121-130.
    [71] Y.J. Tseng, National Taiwan University of Science and Technology, 2015.
    [72] A. Elkhyat, C. Courderot-Masuyer, T. Gharbi, P. Humbert, Skin Research and Technology, 10 (2004) 215-221.

    無法下載圖示 全文公開日期 2020/02/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE