簡易檢索 / 詳目顯示

研究生: 江晨光
CHEN-KUANG CHIANG
論文名稱: 利用三維列印系統製備紙基底微流道裝置並評估其在亞硝酸根離子以及血紅素感測之應用
Preparation and Evaluation of 3D Printed Microfluidic Paper-based Devices for the Detection of Nitrite and Hemoglobin
指導教授: 高震宇
Chen-Yu Kao
王孟菊
Meng-Jiy Wang
口試委員: 陳林祈
Lin-Chi Chen
王孟菊
Meng-Jiy Wang
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 189
中文關鍵詞: 紙基底微流道裝置比色法唾液亞硝酸根離子感測抗血紅素適體3-氨基丙基三乙氧基矽烷
外文關鍵詞: Microfluidic paper-based analytical device, Colorimetry, Griess reagent, Anti hemoglobin aptamer, (3-aminopropyl) triethoxysilane
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用自行開發的新式三維列印系統將石蠟塗佈於濾紙上,形成微流道圖案,完成紙基底微流道裝置,並且固定生物辨識分子於微流道內,做成生物分子感測器,並透過比色分析法進行亞硝酸根離子以及血紅素感測,論文中將分成兩部份,討論紙基底微流道感測器在亞硝酸根離子以及血紅素檢測的設計與感測表現。
    論文的第一部分為利用紙基底微流道感測器,對唾液中亞硝酸根離子進行感測,口腔中的亞硝酸根離子被牙醫師視為牙周病的指標,透過格里斯氏試劑 (Griess reagent) 進行化學反應,可將亞硝酸根離子消耗並轉換具有顏色的偶氮化合物,並呈現於紙基底微流道感測器。實驗中藉由改變感測器的物理與化學保存環境,測試感測器在不同保存天數後的表現,本論文亦使用不同的微流道圖樣並製作成品,因此透過改變微流道的設計,可觀察改變流道長短、試劑量以及滴入樣品多寡對於亞硝酸根離子感測的影響,並使用不同黏度的亞硝酸鈉溶液與人體唾液樣品進行裝置測試,完成無須對唾液樣品進行前處理步驟的紙基底感測器,亞硝酸根離子的感測結果經過數據迴歸後,得到最佳線性範圍為7.8 - 500 uM ( R2 = 0.99 ),檢測極限為 38.3 uM,靈敏度為0.08 a.u/uM,針對未知濃度樣品與真實口水樣品,比較紙基底微流道感測器與微孔盤分光光度計的感測結果,未知濃度樣品平均恢復率 (recovery) 達到91.5 %,而真實唾液樣品的恢復率則達到85.2 %。
    論文的第二部分是利用新式三維列印技術,製作紙基底微流體感測器,此感測器檢驗糞便潛血為目的,於微流道中固定對去氧核醣核酸適體 (DNA aptamer),藉此捕捉樣品中的血紅素,再透過將微流道設計成可折疊結構,利用毛細現象完成過濾、洗脫與濃縮等多步驟程序,紙基底感測器可藉由血紅素的催化性質,將四甲基聯苯胺 ( TMB) 反應成藍色化學物質,達到不須標記 (label-free) 且定量的感測結果。為固定適體作為生物辨識元件,此裝置利用3-氨基丙基三乙氧基矽烷 (APTES ) 與戊二醛 (GA) 產生的席夫鹼 (schiff base) 反應,將胺基修飾的適體 (NH2 aptamer) 固定於纖維素上,由於長鏈的適體較為昂貴,為提升適體的利用效率,此論文研究化學修飾的時間與氧氣電漿處理對基材表面官能基密度與適體固定效率的影響。完成的紙基底感測器則透過場發射掃描式電子顯微鏡 (FE-SEM)、全反射傅立葉紅外線光譜儀 (ATR-FTIR)、甲基橙吸附、茚三酮反應、與超微量分光光度計分析材料的表面型態、定量官能基密度與固定的適體重量,最終計算適體固定的效率。使用10 uM適體進行修飾時,依照化學修飾時間得到的是固定效率約為14 % 至 94 %,使用50 uM適體進行修飾時,固定效率約為4 % 至 91 %,而經過氧氣電漿前處理的裝置,則適體固定效率提升,使用10 uM適體進行修飾時,固定效率約為84 % 至 91 %,使用50 uM適體進行修時時,固定效率約為57至85 %,結果顯示透過氧氣電漿對基材進行處理可以縮短化學修飾時間,並提升適體固定效率。


    In this thesis, the novel three dimensional wax printing method was utilized to develop micropattern on filter paper to fabricate microfluidic paper-based analytical devices (uPADs). By immobilizing bimolecular recognition element on the prepared uPADs, on-site nitrite and hemoglobin detection would be facilitated. The detection method was based on colorimetry through analyzing the color intensity on uPADs. The thesis is composed by two parts: detection of nitrite in aqueous solution and saliva, and uPAD for blood detection.
    For the first part of this thesis, the prepared uPAD aimed to be applied for salivary nitrite detection because the nitrite molecule was considered as an inflammation biomarker for periodontist. When uPAD was modified with Griess reagent, this device can detect nitrite though azo coupling that generates pink color. In order to evaluate and prolong the shelf life of uPAD, the device was selected to undergo different conditions of storage by changing the composition of ambient gas and the time period of light exposure. The validity of uPAD was checked by means of sensing performance every day. To enable uPAD to be used for viscous saliva sample, the design of micropattern, the volume of Griess reagent, and the volume of sample were optimized, followed by further detecting two samples with different viscosity including sodium nitrite solution and saliva. The results revealed a good sensing performance on both samples. Moreover, this design of uPAD can detect raw saliva without any pretreatment. The linear range is 7.8 - 500 uM (R2 = 0.99) with the sensitivity of 0.08 a.u/uM. For the sodium nitrite solution and the raw saliva sensing, the recovery achieved 91.5 % and 85.2 %, respectively.
    The second part of this thesis focused on applying uPAD for the detection of hemoglobin for fecal occult blood test. To achieve this purpose, the structure of uPAD was designed as a foldable form and the anti-hemoglobin aptamer was immobilized on the microchannel to capture the suspended hemoglobin in solution. The foldable structure could offer specific function as filtering, capturing, enrichment and washing. Due to the catalytic property of hemoglobin, the 3,3’,5,5’-tetramethylbenzidine substrate can be converted into dye in the presence of hydrogen peroxide to achieve label-free detection. In order to anchor aptamer, the device was modified with (3-aminopropyl) triethoxysilane and glutaraldehyde to generate the imine bond with amino-terminated aptamer. The chemically modified PAD was characterized by SEM, ATR-FTIR, spectrophotometer, methyl orange absorption test, and ninhydrin test. To maximize the efficiency of aptamer immobilization, the time of chemical treatment was varied and oxygen plasma was utilized as pretreatment. Without plasma treatment, the immobilization efficiency was 14 % for GA (10)-APTES (10)-cellulose. With plasma treatment, the immobilization efficiency increased to 84 % for GA (10)-APTES (10)-O2-cellulose. The result suggests that oxygen plasma treatment provides the potential for aptamer immobilization.

    摘要 i abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xx 第一章、 緒論 1 1-1、 前言 1 1-2 、 研究動機 2 1-3 、 論文總攬 3 第二章、 文獻回顧 4 2-1、 感測器 4 2-1-1、 感測器的發展 4 2-1-2、 感測器的簡介 5 2-2、 生物感測器簡介 5 2-2-1、 生物感測器的定義 5 2-2-2、 生物感測器的結構 6 2-3、 紙基底微流體感測器簡介 13 2-3-1、 紙張作為基底材料的特性 13 2-3-2、 紙張基底微流體感測器的特性 14 2-3-3、 紙基底微流道裝置的製備方法 17 2-3-4、 紙基底微流體感測器的感測應用 29 2-3-5、 紙基底微流體感測器於亞硝酸根離子的感測 44 2-4、 適體簡介 47 2-4-1、 適體在生物感測器的發展 47 2-4-2、 適體的特性 48 2-4-2、 適體的生產 49 2-4-3、 適體與抗體的優缺點 52 2-5、生物辨識分子固定技術 55 2-5-1、 吸附法 56 2-5-2、 共價鍵結法 57 2-5-3、 包埋法 57 2-5-4、 交聯法 57 2-5-5、 親合法 58 2-5-6、 適體的固定技術 58 2-5-7、 適體的固定效率比較 62 第三章、 實驗方法 63 3-1、 實驗設備 64 3-2、 實驗藥品與溶液配置 65 3-2-1、 實驗藥品 65 3-2-2、 溶液配置 67 3-2-3、 樣品準備 68 3-3、 實驗方法 69 3-3-1、 可製備紙基底微流道裝置的列印設備 69 3-3-2、 比色分析法 72 3-3-4、 人體唾液樣品之亞硝酸根離子定量 75 3-3-5、 測試物理化學保存環境對亞硝酸根離子紙基底微流道感測器之影響 76 3-3-6、 以未知濃度樣品與真實唾液樣品測試紙基底微流道感測器有效性 77 3-3-7、 製備血紅素紙基底微流道感測器 78 3-3-8、 以甲基橙定量表面胺官能基 83 3-3-9、 以茚三酮定量表面胺官能基 85 3-3-10、 測量適體接枝效率 87 3-4、 實驗儀器原理 88 3-4-1、 掃描式電子顯微鏡 (FE-SEM) 88 3-4-2、 全反射傅立葉紅外線光譜儀 (ATR-FTIR) 88 3-4-3、 紫外線/可見光分光光譜儀 (UV/Vis) 88 3-4-4、 真空電漿設備 89 第四章、 結果與討論 90 4-1、 亞硝酸根離子紙基底微流道感測器製造參數與感測測試 91 4-1-1、 亞硝酸根離子紙基底微流道感測器在不同環境保存下的表現 92 4-1-2、 以人體唾液樣品測試感測器的有效保存期 102 4-1-3、 格里斯氏試劑多寡對感測器的影響 104 4-1-4、 微流道長短與樣品多寡對道感測器的影響 112 4-2、 人類血紅素紙基底微流道感測器製造參數與感測測試 119 4-2-1、 修飾胺基與醛基至纖維素對材料表面的影響 120 4-2-2、 APTES修飾之纖維素表面型態分析 121 4-2-3、 修飾之纖維素表面官能基分析 124 4-2-4、 使用甲基橙分析電漿處理與化學修飾時間對官能基的影響 128 4-2-5、 使用茚三酮分析電漿處理與化學修飾時間對官能基的影響 133 4-2-6、 分析適體濃度對固定化效率的影響 137 第五章、 結論與未來展望 141 5-1、 結論-紙基底感測器應於唾液亞硝酸根離子感測 141 5-2、 結論-紙基底感測器應於血紅素感測 142 5-3、 未來展望 143 第六章、 參考文獻 144 問題回答 158

    [1] C. D. Chin, S. Y. Chin, T. Laksanasopin, and S. K. Sia, "Low-cost microdevices for point-of-care testing," in Point-of-care Diagnostics on a chip, ed: Springer, 2013, pp. 3-21.
    [2] Minitstry of Health and Welfare, Taiwan, "National Health Expenditure, " 2017.
    [3] W. V. Giannobile, T. Beikler, J. S. Kinney, C. A. Ramseier, T. Morelli, and D. T. Wong, "Saliva as a diagnostic tool for periodontal disease: current state and future directions," Periodontology 2000, vol. 50, pp. 52-64, 2009.
    [4] H. Löe and J. Silness, "Periodontal disease in pregnancy I. Prevalence and severity," Acta odontologica scandinavica, vol. 21, pp. 533-551, 1963.
    [5] R. Tang, J. Y. Wang, S. K. Lo, and L. L. Hsieh, "Physical activity, water intake and risk of colorectal cancer in Taiwan: A hospital‐based case‐control study," International journal of cancer, vol. 82, pp. 484-489, 1999.
    [6] P. Hewitson, P. P. Glasziou, L. Irwig, B. Towler, and E. Watson, "Screening for colorectal cancer using the faecal occult blood test, Hemoccult," The Cochrane Library, 2007.
    [7] A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi, and G. M. Whitesides, "Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis," Analytical chemistry, vol. 80, pp. 3699-3707, 2008.
    [8] A. Nilghaz, L. Guan, W. Tan, and W. Shen, "Advances of Paper-Based Microfluidics for Diagnostics-The Original Motivation and Current Status," ACS Sensors, vol. 1, pp. 1382-1393, 2016.
    [9] C.-K. Chiang, A. Kurniawan, C.-Y. Kao, and M.-J. Wang, "Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays," Talanta, vol. 194, pp. 837-845, 2019.
    [10] A. P. Bejeh-Mir, H. Parsian, M. A. Khoram, N. Ghasemi, A. Bijani, and M. Khosravi-Samani, "Diagnostic role of salivary and GCF nitrite, nitrate and nitric oxide to distinguish healthy periodontium from gingivitis and periodontitis," International journal of molecular and cellular medicine, vol. 3, p. 138, 2014.
    [11] L.-S. Chen, A. M.-F. Yen, C. G. Fraser, S. Y.-H. Chiu, J. C.-Y. Fann, P.-E. Wang, et al., "Impact of faecal haemoglobin concentration on colorectal cancer mortality and all-cause death," BMJ open, vol. 3, p. e003740, 2013.
    [12] L.-S. Chen, A. M.-F. Yen, S. Y.-H. Chiu, C.-S. Liao, and H.-H. Chen, "Baseline faecal occult blood concentration as a predictor of incident colorectal neoplasia: longitudinal follow-up of a Taiwanese population-based colorectal cancer screening cohort," The lancet oncology, vol. 12, pp. 551-558, 2011.
    [13] A. Turner, I. Karube, and G. S. Wilson, "Biosensors: fundamentals and applications," 1987.
    [14] B. R. Eggins, "Analytical Techniques in the Sciences," ed: John Wiley & Sons, Ltd., Chichester, UK, 2002.
    [15] A. Hierlemann, O. Brand, C. Hagleitner, and H. Baltes, "Microfabrication techniques for chemical/biosensors," Proceedings of the IEEE, vol. 91, pp. 839-863, 2003.
    [16] P. Gründler, Chemical sensors: an introduction for scientists and engineers: Springer Science & Business Media, 2007.
    [17] W. S. Kisaalita, "Biosensor standards requirements," Biosensors and Bioelectronics, vol. 7, pp. 613-620, 1992.
    [18] T. Vo-Dinh and B. Cullum, "Biosensors and biochips: advances in biological and medical diagnostics," Fresenius' journal of analytical chemistry, vol. 366, pp. 540-551, 2000.
    [19] L. C. Clark Jr and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962.
    [20] P. Mehrotra, "Biosensors and their applications–A review," Journal of oral biology and craniofacial research, vol. 6, pp. 153-159, 2016.
    [21] A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews, vol. 42, pp. 3184-3196, 2013.
    [22] J. D. Newman and A. P. Turner, "Home blood glucose biosensors: a commercial perspective," Biosensors and bioelectronics, vol. 20, pp. 2435-2453, 2005.
    [23] J. Castillo, S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, et al., "Biosensors for life quality: Design, development and applications," Sensors and Actuators B: Chemical, vol. 102, pp. 179-194, 2004.
    [24] G. Gauglitz, "Direct optical detection in bioanalysis: an update," Analytical and bioanalytical chemistry, vol. 398, pp. 2363-2372, 2010.
    [25] K. Mosbach, "Thermal biosensors," Biosensors and Bioelectronics, vol. 6, pp. 179-182, 1991.
    [26] D. Grieshaber, R. MacKenzie, J. Voeroes, and E. Reimhult, "Electrochemical biosensors-sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, 2008.
    [27] W. Ko, C. Yim, N. Jung, J. Joo, S. Jeon, H. Seo, et al., "A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors," Nanotechnology, vol. 22, p. 405502, 2011.
    [28] J. Lange, R. Kötitz, A. Haller, L. Trahms, W. Semmler, and W. Weitschies, "Magnetorelaxometry—A new binding specific detection method based on magnetic nanoparticles," Journal of magnetism and magnetic materials, vol. 252, pp. 381-383, 2002.
    [29] Y. Liu, Z. Matharu, M. C. Howland, A. Revzin, and A. L. Simonian, "Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing," Analytical and bioanalytical chemistry, vol. 404, pp. 1181-1196, 2012.
    [30] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chemical reviews, vol. 108, pp. 462-493, 2008.
    [31] K. Haupt and K. Mosbach, "Molecularly imprinted polymers and their use in biomimetic sensors," Chemical reviews, vol. 100, pp. 2495-2504, 2000.
    [32] G. W. Gokel, W. M. Leevy, and M. E. Weber, "Crown ethers: sensors for ions and molecular scaffolds for materials and biological models," Chemical reviews, vol. 104, pp. 2723-2750, 2004.
    [33] M. Gerard, A. Chaubey, and B. Malhotra, "Application of conducting polymers to biosensors," Biosensors and bioelectronics, vol. 17, pp. 345-359, 2002.
    [34] V. Acha, T. Andrews, Q. Huang, D. K. Sardar, and P. J. Hornsby, "Tissue-based biosensors," in Recognition Receptors in Biosensors, ed: Springer, 2010, pp. 365-381.
    [35] D. J. Christini, J. Walden, and J. M. Edelberg, "Direct biologically based biosensing of dynamic physiological function," American Journal of Physiology-Heart and Circulatory Physiology, vol. 280, pp. H2006-H2010, 2001.
    [36] F.-G. Banica, Chemical sensors and biosensors: fundamentals and applications: John Wiley & Sons, 2012.
    [37] M. A. Arugula and A. Simonian, "Novel trends in affinity biosensors: current challenges and perspectives," Measurement Science and Technology, vol. 25, p. 032001, 2014.
    [38] P. J. Conroy, S. Hearty, P. Leonard, and R. J. O’Kennedy, "Antibody production, design and use for biosensor-based applications," in Seminars in cell & developmental biology, 2009, pp. 10-26.
    [39] G. Köhler and C. Milstein, "Continuous cultures of fused cells secreting antibody of predefined specificity," Nature, vol. 256, p. 495, 1975.
    [40] J. Liu, Z. Cao, and Y. Lu, "Functional nucleic acid sensors," Chemical reviews, vol. 109, pp. 1948-1998, 2009.
    [41] S. Y. Toh, M. Citartan, S. C. Gopinath, and T.-H. Tang, "Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay," Biosensors and bioelectronics, vol. 64, pp. 392-403, 2015.
    [42] N. Misawa, T. Osaki, and S. Takeuchi, "Membrane protein-based biosensors," Journal of The Royal Society Interface, vol. 15, p. 20170952, 2018.
    [43] H. T. Sahin and M. B. Arslan, "A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures," International journal of molecular sciences, vol. 9, pp. 78-88, 2008.
    [44] R. Pelton, "Bioactive paper provides a low-cost platform for diagnostics," TrAC Trends in Analytical Chemistry, vol. 28, pp. 925-942, 2009.
    [45] V. Grigoriev, K. Strengell, M. Virtanen, and M. Hietaniemi, "Strength chemistry for board and tissue production: Scientific outlook and end applications," 2010.
    [46] A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, "FLASH: a rapid method for prototyping paper-based microfluidic devices," Lab on a Chip, vol. 8, pp. 2146-2150, 2008.
    [47] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Analytical chemistry, vol. 81, pp. 7091-7095, 2009.
    [48] S. Z. Hossain, R. E. Luckham, A. M. Smith, J. M. Lebert, L. M. Davies, R. H. Pelton, et al., "Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol− gel-derived bioinks," Analytical chemistry, vol. 81, pp. 5474-5483, 2009.
    [49] M. M. Ali, S. D. Aguirre, Y. Xu, C. D. Filipe, R. Pelton, and Y. Li, "Detection of DNA using bioactive paper strips," Chemical Communications, pp. 6640-6642, 2009.
    [50] H. Yagoda, "Applications of confined spot tests in analytical chemistry: preliminary paper," Industrial & Engineering Chemistry Analytical Edition, vol. 9, pp. 79-82, 1937.
    [51] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, "Diagnostics for the developing world: microfluidic paper-based analytical devices," Analytical chemistry, vol. 82, pp. 3-10, 2009.
    [52] C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, et al., "Paper‐based ELISA," Angewandte Chemie, vol. 122, pp. 4881-4884, 2010.
    [53] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low‐volume, portable bioassays," Angewandte Chemie International Edition, vol. 46, pp. 1318-1320, 2007.
    [54] X. Li, J. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment," Analytical chemistry, vol. 80, pp. 9131-9134, 2008.
    [55] P.-K. Kao and C.-C. Hsu, "One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization," Microfluidics and nanofluidics, vol. 16, pp. 811-818, 2014.
    [56] P.-K. Kao and C.-C. Hsu, "Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand," Analytical chemistry, vol. 86, pp. 8757-8762, 2014.
    [57] D. A. Bruzewicz, M. Reches, and G. M. Whitesides, "Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper," Analytical chemistry, vol. 80, pp. 3387-3392, 2008.
    [58] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, "Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay," Electrophoresis, vol. 30, pp. 1497-1500, 2009.
    [59] C. Renault, J. Koehne, A. J. Ricco, and R. M. Crooks, "Three-dimensional wax patterning of paper fluidic devices," Langmuir, vol. 30, pp. 7030-7036, 2014.
    [60] T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping," Talanta, vol. 85, pp. 2587-2593, 2011.
    [61] P. de Tarso Garcia, T. M. G. Cardoso, C. D. Garcia, E. Carrilho, and W. K. T. Coltro, "A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays," RSC Advances, vol. 4, pp. 37637-37644, 2014.
    [62] W. Dungchai, O. Chailapakul, and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst, vol. 136, pp. 77-82, 2011.
    [63] J. Olkkonen, K. Lehtinen, and T. Erho, "Flexographically printed fluidic structures in paper," Analytical chemistry, vol. 82, pp. 10246-10250, 2010.
    [64] G. Chitnis, Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab on a Chip, vol. 11, pp. 1161-1165, 2011.
    [65] C. Sones, I. Katis, P. He, B. Mills, M. Namiq, P. Shardlow, et al., "Laser-induced photo-polymerisation for creation of paper-based fluidic devices," Lab on a Chip, vol. 14, pp. 4567-4574, 2014.
    [66] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, pp. 19606-19611, 2008.
    [67] H. Liu and R. M. Crooks, "Three-dimensional paper microfluidic devices assembled using the principles of origami," Journal of the American Chemical Society, vol. 133, pp. 17564-17566, 2011.
    [68] Y. He, W.-b. Wu, and J.-z. Fu, "Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer," RSC Advances, vol. 5, pp. 2694-2701, 2015.
    [69] V. F. Curto, N. Lopez-Ruiz, L. F. Capitan-Vallvey, A. J. Palma, F. Benito-Lopez, and D. Diamond, "Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink," Rsc Advances, vol. 3, pp. 18811-18816, 2013.
    [70] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, "Recent developments in paper-based microfluidic devices," Analytical chemistry, vol. 87, pp. 19-41, 2014.
    [71] E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, "Multiplex lateral-flow test strips fabricated by two-dimensional shaping," ACS applied materials & interfaces, vol. 1, pp. 124-129, 2008.
    [72] J. Nie, Y. Liang, Y. Zhang, S. Le, D. Li, and S. Zhang, "One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices," Analyst, vol. 138, pp. 671-676, 2013.
    [73] Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, et al., "Electrochemical sensing in paper-based microfluidic devices," Lab on a Chip, vol. 10, pp. 477-483, 2010.
    [74] J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, and W. Wei, "Electrochemical detection of Pb and Cd in paper-based microfluidic devices," Journal of the Brazilian Chemical Society, vol. 23, pp. 1124-1130, 2012.
    [75] J. Lu, S. Ge, L. Ge, M. Yan, and J. Yu, "Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing," Electrochimica Acta, vol. 80, pp. 334-341, 2012.
    [76] K. Scida, B. Li, A. D. Ellington, and R. M. Crooks, "DNA detection using origami paper analytical devices," Analytical chemistry, vol. 85, pp. 9713-9720, 2013.
    [77] M. He and Z. Liu, "paper-based microfluidic device with upconversion fluorescence assay," Analytical chemistry, vol. 85, pp. 11691-11694, 2013.
    [78] L. Ge, S. Wang, X. Song, S. Ge, and J. Yu, "3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device," Lab on a Chip, vol. 12, pp. 3150-3158, 2012.
    [79] L. Ge, P. Wang, S. Ge, N. Li, J. Yu, M. Yan, et al., "Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source," Analytical chemistry, vol. 85, pp. 3961-3970, 2013.
    [80] R. Cha, D. Wang, Z. He, and Y. Ni, "Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent," Carbohydrate polymers, vol. 88, pp. 1414-1419, 2012.
    [81] W.-J. Zhu, D.-Q. Feng, M. Chen, Z.-D. Chen, R. Zhu, H.-L. Fang, et al., "Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip," Sensors and Actuators B: Chemical, vol. 190, pp. 414-418, 2014.
    [82] D. M. Cate, W. Dungchai, J. C. Cunningham, J. Volckens, and C. S. Henry, "Simple, distance-based measurement for paper analytical devices," Lab on a Chip, vol. 13, pp. 2397-2404, 2013.
    [83] S. Karita and T. Kaneta, "Chelate titrations of Ca2+ and Mg2+ using microfluidic paper-based analytical devices," Analytica chimica acta, vol. 924, pp. 60-67, 2016.
    [84] T. Satarpai, J. Shiowatana, and A. Siripinyanond, "based analytical device for sampling, on-site preconcentration and detection of ppb lead in water," Talanta, vol. 154, pp. 504-510, 2016.
    [85] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, "Gold nanoparticles in chemical and biological sensing," Chemical reviews, vol. 112, pp. 2739-2779, 2012.
    [86] X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, "Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches," International journal of molecular sciences, vol. 17, p. 1534, 2016.
    [87] D. Quesada-González and A. Merkoçi, "Nanoparticle-based lateral flow biosensors," Biosensors and Bioelectronics, vol. 73, pp. 47-63, 2015.
    [88] H. de Puig, I. Bosch, L. Gehrke, and K. Hamad-Schifferli, "Challenges of the Nano–Bio Interface in Lateral Flow and Dipstick Immunoassays," Trends in biotechnology, 2017.
    [89] S. Eustis and M. A. El-Sayed, "Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes," Chemical society reviews, vol. 35, pp. 209-217, 2006.
    [90] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," ed: ACS Publications, 2003.
    [91] T. T. Tsai, S. W. Shen, C. M. Cheng, and C. F. Chen, "Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles," Sci Technol Adv Mater, vol. 14, p. 044404, Aug 2013.
    [92] G.-H. Chen, W.-Y. Chen, Y.-C. Yen, C.-W. Wang, H.-T. Chang, and C.-F. Chen, "Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices," Analytical chemistry, vol. 86, pp. 6843-6849, 2014.
    [93] F. Figueredo, P. T. Garcia, E. Cortón, and W. K. Coltro, "Enhanced analytical performance of paper microfluidic devices by using Fe3O4 nanoparticles, MWCNT, and graphene oxide," ACS applied materials & interfaces, vol. 8, pp. 11-15, 2015.
    [94] X. Yang, N. Z. Piety, S. M. Vignes, M. S. Benton, J. Kanter, and S. S. Shevkoplyas, "Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings," Clinical chemistry, p. clinchem. 2013.204701, 2013.
    [95] X. Li, J. Tian, and W. Shen, "Quantitative biomarker assay with microfluidic paper-based analytical devices," Analytical and bioanalytical chemistry, vol. 396, pp. 495-501, 2010.
    [96] Y. Xu, M. Liu, N. Kong, and J. Liu, "Lab-on-paper micro-and nano-analytical devices: fabrication, modification, detection and emerging applications," Microchimica Acta, vol. 183, pp. 1521-1542, 2016.
    [97] J. Noiphung, T. Songjaroen, W. Dungchai, C. S. Henry, O. Chailapakul, and W. Laiwattanapaisal, "Electrochemical detection of glucose from whole blood using paper-based microfluidic devices," Analytica chimica acta, vol. 788, pp. 39-45, 2013.
    [98] J. Yang, Y.-G. Nam, S.-K. Lee, C.-S. Kim, Y.-M. Koo, W.-J. Chang, et al., "fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes," Sensors and Actuators B: Chemical, vol. 203, pp. 44-53, 2014.
    [99] J. Hu, A. Stein, and P. Bühlmann, "A Disposable Planar Paper‐Based Potentiometric Ion‐Sensing Platform," Angewandte Chemie International Edition, vol. 55, pp. 7544-7547, 2016.
    [100] K. Yamada, H. Shibata, K. Suzuki, and D. Citterio, "Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges," Lab on a Chip, vol. 17, pp. 1206-1249, 2017.
    [101] B. M. Jayawardane, S. Wei, I. D. McKelvie, and S. D. Kolev, "Microfluidic paper-based analytical device for the determination of nitrite and nitrate," Analytical chemistry, vol. 86, pp. 7274-7279, 2014.
    [102] S. A. Bhakta, R. Borba, M. Taba Jr, C. D. Garcia, and E. Carrilho, "Determination of nitrite in saliva using microfluidic paper-based analytical devices," Analytica chimica acta, vol. 809, pp. 117-122, 2014.
    [103] J. Noiphung, M. P. Nguyen, C. Punyadeera, Y. Wan, W. Laiwattanapaisal, and C. S. Henry, "Development of paper-based analytical devices for minimizing the viscosity effect in human saliva," Theranostics, vol. 8, p. 3797, 2018.
    [104] S. D. Jayasena, "Aptamers: an emerging class of molecules that rival antibodies in diagnostics," Clinical chemistry, vol. 45, pp. 1628-1650, 1999.
    [105] A. Voller, G. Huldt, C. Thors, and E. Engvall, "New serological test for malaria antibodies," Br Med J, vol. 1, pp. 659-661, 1975.
    [106] A. Svennerholm and G. Wiklund, "Rapid GM1-enzyme-linked immunosorbent assay with visual reading for identification of Escherichia coli heat-labile enterotoxin," Journal of clinical microbiology, vol. 17, pp. 596-600, 1983.
    [107] A. Meenakshi, R. Suresh Kumar, and N. Siva Kumar, "ELISA for quantitation of serum C-erbB-2 oncoprotein in breast cancer patients," Journal of Immunoassay and Immunochemistry, vol. 23, pp. 293-305, 2002.
    [108] G. L. Conn and D. E. Draper, "RNA structure," Current opinion in structural biology, vol. 8, pp. 278-285, 1998.
    [109] T. Hermann and D. J. Patel, "Adaptive recognition by nucleic acid aptamers," Science, vol. 287, pp. 820-825, 2000.
    [110] Z.-S. Wu, M.-M. Guo, S.-B. Zhang, C.-R. Chen, J.-H. Jiang, G.-L. Shen, et al., "Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers," Analytical chemistry, vol. 79, pp. 2933-2939, 2007.
    [111] E. Baldrich, A. Restrepo, and C. K. O'Sullivan, "Aptasensor development: elucidation of critical parameters for optimal aptamer performance," Analytical chemistry, vol. 76, pp. 7053-7063, 2004.
    [112] M. D. Schlensog, T. M. Gronewold, M. Tewes, M. Famulok, and E. Quandt, "A Love-wave biosensor using nucleic acids as ligands," Sensors and Actuators B: Chemical, vol. 101, pp. 308-315, 2004.
    [113] M. Minunni, S. Tombelli, A. Gullotto, E. Luzi, and M. Mascini, "Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein," Biosensors and Bioelectronics, vol. 20, pp. 1149-1156, 2004.
    [114] S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, "Surface immobilization methods for aptamer diagnostic applications," Analytical and bioanalytical chemistry, vol. 390, pp. 1009-1021, 2008.
    [115] M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset, and E. Peyrin, "A DNA aptamer as a new target-specific chiral selector for HPLC," Journal of the American Chemical Society, vol. 125, pp. 8672-8679, 2003.
    [116] H. U. Göringer, M. Homann, and M. Lorger, "In vitro selection of high-affinity nucleic acid ligands to parasite target molecules," International journal for parasitology, vol. 33, pp. 1309-1317, 2003.
    [117] L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, "Selection of single-stranded DNA molecules that bind and inhibit human thrombin," Nature, vol. 355, p. 564, 1992.
    [118] K. A. Marshall and A. D. Ellington, "[14] In vitro selection of RNA aptamers," 2000.
    [119] R. Stoltenburg, C. Reinemann, and B. Strehlitz, "SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands," Biomolecular engineering, vol. 24, pp. 381-403, 2007.
    [120] M. Little, S. Kipriyanov, F. Le Gall, and G. Moldenhauer, "Of mice and men: hybridoma and recombinant antibodies," Immunology today, vol. 21, pp. 364-370, 2000.
    [121] D. C. Andersen and D. E. Reilly, "Production technologies for monoclonal antibodies and their fragments," Current Opinion in Biotechnology, vol. 15, pp. 456-462, 2004.
    [122] A. Chen and S. Yang, "Replacing antibodies with aptamers in lateral flow immunoassay," Biosensors and bioelectronics, vol. 71, pp. 230-242, 2015.
    [123] J. K. Liu, "The history of monoclonal antibody development–Progress, remaining challenges and future innovations," Annals of Medicine and Surgery, vol. 3, pp. 113-116, 2014.
    [124] H. Qin, J. Ren, J. Wang, N. W. Luedtke, and E. Wang, "G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions," Analytical chemistry, vol. 82, pp. 8356-8360, 2010.
    [125] A. Sassolas, L. J. Blum, and B. D. Leca-Bouvier, "Immobilization strategies to develop enzymatic biosensors," Biotechnology advances, vol. 30, pp. 489-511, 2012.
    [126] M. Witt, J.-G. Walter, and F. Stahl, "Aptamer microarrays—Current status and future prospects," Microarrays, vol. 4, pp. 115-132, 2015.
    [127] K. A. Edwards and A. J. Baeumner, "Aptamer sandwich assays: label-free and fluorescence investigations of heterogeneous binding events," Analytical and bioanalytical chemistry, vol. 398, pp. 2635-2644, 2010.
    [128] N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, et al., "Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays," Analytical biochemistry, vol. 280, pp. 143-150, 2000.
    [129] J. Pultar, U. Sauer, P. Domnanich, and C. Preininger, "Aptamer–antibody on-chip sandwich immunoassay for detection of CRP in spiked serum," Biosensors and Bioelectronics, vol. 24, pp. 1456-1461, 2009.
    [130] J.-G. Walter, O. z. Kökpinar, K. Friehs, F. Stahl, and T. Scheper, "Systematic Investigation of Optimal Aptamer Immobilization for Protein− Microarray Applications," Analytical chemistry, vol. 80, pp. 7372-7378, 2008.
    [131] E. J. Cho, J. R. Collett, A. E. Szafranska, and A. D. Ellington, "Optimization of aptamer microarray technology for multiple protein targets," Analytica chimica acta, vol. 564, pp. 82-90, 2006.
    [132] M. Lönne, S. Bolten, A. Lavrentieva, F. Stahl, T. Scheper, and J.-G. Walter, "Development of an aptamer-based affinity purification method for vascular endothelial growth factor," Biotechnology Reports, vol. 8, pp. 16-23, 2015.
    [133] J. Escorihuela, M.-J. Bañuls, S. Grijalvo, R. n. Eritja, R. Puchades, and A. n. Maquieira, "Direct covalent attachment of DNA microarrays by rapid thiol–Ene “click” chemistry," Bioconjugate chemistry, vol. 25, pp. 618-627, 2014.
    [134] D. Tsikas, "Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research," Journal of Chromatography B, vol. 851, pp. 51-70, 2007.
    [135] R. A. Morelatto, T. E. Benavidez, A. M. Baruzzi, V. M. Solís, and S. A. L. de Blanc, "Effect of Pre-Analytical Conditions on Salivary Nitrite Levels," American Journal of Analytical Chemistry, vol. 2, p. 683, 2011.
    [136] A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, et al., "Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper," Analytical chemistry, vol. 81, pp. 8447-8452, 2009.
    [137] G. S. Sittampalam, S. D. Kahl, and W. P. Janzen, "High-throughput screening: advances in assay technologies," Current opinion in chemical biology, vol. 1, pp. 384-391, 1997.
    [138] B. Bisha, J. A. Adkins, J. C. Jokerst, J. C. Chandler, A. Pérez-Méndez, S. M. Coleman, et al., "Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water," JoVE (Journal of Visualized Experiments), pp. e51414-e51414, 2014.
    [139] S. Z. Hossain and J. D. Brennan, "β-Galactosidase-based colorimetric paper sensor for determination of heavy metals," Analytical chemistry, vol. 83, pp. 8772-8778, 2011.
    [140] J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, "Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens," Analytical chemistry, vol. 84, pp. 2900-2907, 2012.
    [141] M. Kavruk, V. C. Özalp, and H. A. Öktem, "Portable bioactive paper-based sensor for quantification of pesticides," Journal of analytical methods in chemistry, vol. 2013, 2013.
    [142] H. S. Seo, B. H. Kim, and Y. M. Ko, "Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance," Progress in Organic Coatings, vol. 69, pp. 38-44, 2010.
    [143] R. Huang, Q. Liu, J. Huo, and B. Yang, "Adsorption of methyl orange onto protonated cross-linked chitosan," Arabian Journal of Chemistry, vol. 10, pp. 24-32, 2017.
    [144] A. Hartwig, M. Mulder, and C. A. Smolders, "Surface amination of poly (acrylonitrile)," Advances in Colloid and interface Science, vol. 52, pp. 65-78, 1994.
    [145] M. Friedman, "Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences," Journal of agricultural and food chemistry, vol. 52, pp. 385-406, 2004.
    [146] E. Soto-Cantu, R. Cueto, J. Koch, and P. S. Russo, "Synthesis and rapid characterization of amine-functionalized silica," Langmuir, vol. 28, pp. 5562-5569, 2012.
    [147] S. A. Fawcett, J. M. Curran, R. Chen, N. P. Rhodes, M. F. Murphy, P. Wilson, et al., "Defining the Properties of an Array of–NH 2-Modified Substrates for the Induction of a Mature Osteoblast/Osteocyte Phenotype from a Primary Human Osteoblast Population Using Controlled Nanotopography and Surface Chemistry," Calcified tissue international, vol. 100, pp. 95-106, 2017.
    [148] A. Borba, A. Gómez-Zavaglia, and R. Fausto, "Conformational landscape, photochemistry, and infrared spectra of sulfanilamide," The Journal of Physical Chemistry A, vol. 117, pp. 704-717, 2013.
    [149] S. Bodavari, The merck index: Monograph, 2006.
    [150] A. Tačić, V. Nikolić, L. Nikolić, and I. Savić, "Antimicrobial sulfonamide drugs," Advanced Technologies, vol. 6, pp. 58-71, 2017.
    [151] M. Zhou, M. Yang, and F. Zhou, "Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe," Biosensors and Bioelectronics, vol. 55, pp. 39-43, 2014.
    [152] S. K. Vashist, E. Lam, S. Hrapovic, K. B. Male, and J. H. Luong, "Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics," Chemical reviews, vol. 114, pp. 11083-11130, 2014.
    [153] J. A. Howarter and J. P. Youngblood, "Optimization of silica silanization by 3-aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [154] N. Majoul, S. Aouida, and B. Bessaïs, "Progress of porous silicon APTES-functionalization by FTIR investigations," Applied Surface Science, vol. 331, pp. 388-391, 2015.
    [155] E. C. da Silva Filho, J. C. de Melo, M. G. da Fonseca, and C. Airoldi, "Cation removal using cellulose chemically modified by a Schiff base procedure applying green principles," Journal of Colloid and Interface Science, vol. 340, pp. 8-15, 2009.
    [156] E. C. Silva Filho, S. Júnior, L. Sousa, M. M. F. Silva, M. G. Fonseca, S. A. A. Santana, et al., "Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution," Materials research, vol. 16, pp. 79-84, 2013.
    [157] T. U. Patro and H. D. Wagner, "Influence of graphene oxide incorporation and chemical cross‐linking on structure and mechanical properties of layer‐by‐layer assembled poly (Vinyl alcohol)‐Laponite free‐standing films," Journal of Polymer Science Part B: Polymer Physics, vol. 54, pp. 2377-2387, 2016.

    無法下載圖示 全文公開日期 2024/02/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE