簡易檢索 / 詳目顯示

研究生: Mulyanto
Mulyanto
論文名稱: Study on Robustness of Two-Dimensional Deep Spatial-Based Learning in Network Intrusion Detection Systems.
Study on Robustness of Two-Dimensional Deep Spatial-Based Learning in Network Intrusion Detection Systems.
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 周承復
Cheng-Fu Chou
曾建超
Chien-Chao Tseng
衛信文
Hsin-Wen Wei
陳俊良
Jiann-Liang Chen
鄭瑞光
Ray-Guang Cheng
阮聖彰
Shanq-Jang Ruan
吳晉賢
Chin-Hsien Wu
呂政修
Jenq-Shiou Leu
陳維美
Wei-Mei Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 70
外文關鍵詞: intrusion detection, NIDS, deep learning, spatial-based neural network
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • As internet usage continues to surge, the sophistication and complexity of cyber-attacks are on the rise. Consequently, it becomes imperative to employ a Network Intrusion Detection System (NIDS) to thwart unauthorized access attempts. Recent advancements have witnessed an increasing integration of deep learning techniques into NIDS, demonstrating substantial potential in enhancing cyber-attack detection capabilities.

    In particular, spatial-based neural networks like Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have exhibited remarkable effectiveness in this context. However, the integration of spatial-based deep learning into NIDS confronts certain limitations. One significant drawback arises from the typical tabular structure of NIDS datasets, which is less suitable for accommodating spatial-based neural networks. Consequently, the untapped potential of spatial deep learning models, renowned for their rich representation capabilities, remains a concern.

    Hence, we present an enhanced approach aimed at bolstering cyber-attack detection by employing spatial deep learning models within NIDS, specifically our two-dimensional deep spatial-based NIDS (TDDS-NIDS). This approach involves the transformation of NIDS features into two-dimensional images, facilitating the representation of spatial relationships among these features. Our proposed model is trained on both a Convolutional Neural Network and a Vision Transformer, utilizing two benchmark NIDS datasets: UNSW-NB15 and CICIDS-2017.

    TABLE OF CONTENT ACKNOWLEDGEMENTS iv TABLE OF CONTENT v LIST OF FIGURES vii LIST OF TABLES ix ABBREVIATIONS x ABSTRACT xi CHAPTER 1 INTRODUCTION 1 1.1. Motivation of Spatial-Based Deep Neural Network 1 1.2. Research Question 3 1.3. Report Outline 4 CHAPTER 2 NETWORK INTRUSION DETECTION SYSTEMS: A DEEP LEARNING APPROACH 5 2.1. Leveraging Deep Learning to NIDS 5 2.2. An Overview of NIDS Research Problems and Methods 6 2.3. An Overview of Our Work in NIDS 15 CHAPTER 3 TWO DIMENSIONAL SPATIAL-BASED NETWORK INTRUSION DETECTION SYSTEMS 17 3.1. Background Theory 17 3.2. Proposed Model 23 3.3. Data Preprocessing 25 3.4. Autoencoder as Feature Extraction 26 3.5. 2D Image Transformation 26 3.6. Spatial-based Neural Network 30 CHAPTER 4 TWO DIMENSIONAL DEEP SPATIAL-BASED NIDS IN PRACTICAL 33 4.1. System 33 4.2. Datasets 33 4.3. Autoencoder Architecture 34 4.4. 2D Image Transformation 35 4.5. Convolutional Neural Network Architecture 38 4.6. Vision Transformer Hyperparameter Setup 39 4.7. Evaluation metrics 40 CHAPTER 5 RESULTS AND ANALYSIS 42 5.1. Automatic Features Extraction Analysis 42 5.2. TDDS-NIDS Implementation Analysis 42 5.3. Performance Analysis 44 5.4. Comparison with Existing NIDS Works 46 5.5. Computation Complexity Analysis 47 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 50 6.1. Conclusion 50 6.2. Future Work 50 REFERENCES xii

    REFERENCES

    [1] E. Balamurugan, A. Mehbodniya, E. Kariri, K. Yadav, A. Kumar, and M. Anul Haq, “Network optimization using defender system in cloud computing security based intrusion detection system withgame theory deep neural network (IDSGT-DNN),” Pattern Recognit. Lett., vol. 156, pp. 142–151, 2022, doi: 10.1016/j.patrec.2022.02.013.
    [2] G. C. Amaizu, C. I. Nwakanma, J. M. Lee, and D. S. Kim, “Investigating Network Intrusion Detection Datasets Using Machine Learning,” Int. Conf. ICT Converg., vol. 2020-Octob, pp. 1325–1328, 2020, doi: 10.1109/ICTC49870.2020.9289329.
    [3] Y. Yin et al., “IGRF-RFE: A Hybrid Feature Selection Method for MLP-based Network Intrusion Detection on UNSW-NB15 Dataset,” J. Big Data, 2022, doi: 10.1186/s40537-023-00694-8.
    [4] O. M. A. Alsyaibani, E. Utami, and A. D. Hartanto, “An Intrusion Detection System Model Based on Bidirectional LSTM,” 3rd Int. Conf. Cybern. Intell. Syst. ICORIS 2021, 2021, doi: 10.1109/ICORIS52787.2021.9649612.
    [5] H. C. Altunay and Z. Albayrak, “A hybrid CNN + LSTMbased intrusion detection system for industrial IoT networks,” Eng. Sci. Technol. an Int. J., vol. 38, p. 101322, 2023, doi: 10.1016/j.jestch.2022.101322.
    [6] Y. Yang, K. Zheng, B. Wu, Y. Yang, and X. Wang, “Network Intrusion Detection Based on Supervised Adversarial Variational Auto-Encoder with Regularization,” IEEE Access, vol. 8, pp. 42169–42184, 2020, doi: 10.1109/ACCESS.2020.2977007.
    [7] S. Yeom, C. Choi, and K. Kim, “AutoEncoder based feature extraction for multi-malicious traffic classification,” ACM Int. Conf. Proceeding Ser., pp. 285–287, 2020, doi: 10.1145/3426020.3426093.
    [8] E. U. H. Qazi, A. Almorjan, and T. Zia, “A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, pp. 4–17, 2022, doi: 10.3390/app12167986.
    [9] L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Comput. Sci., vol. 185, no. June, pp. 239–247, 2021, doi: 10.1016/j.procs.2021.05.025.
    [10] G. Andresini, A. Appice, N. Di Mauro, C. Loglisci, and D. Malerba, “Multi-Channel Deep Feature Learning for Intrusion Detection,” IEEE Access, vol. 8, pp. 53346–53359, 2020, doi: 10.1109/ACCESS.2020.2980937.
    [11] M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and G. Fortino, “A hybrid deep learning model for efficient intrusion detection in big data environment,” Inf. Sci. (Ny)., vol. 513, pp. 386–396, 2020, doi: 10.1016/j.ins.2019.10.069.
    [12] Z. Wu, H. Zhang, P. Wang, and Z. Sun, “RTIDS: A Robust Transformer-Based Approach for Intrusion Detection System,” IEEE Access, vol. 10, pp. 64375–64387, 2022, doi: 10.1109/ACCESS.2022.3182333.
    [13] Y. Yang, C. Yao, J. Yang, and K. Yin, “A Network Security Situation Element Extraction Method Based on Conditional Generative Adversarial Network and Transformer,” IEEE Access, vol. 10, no. September, pp. 107416–107430, 2022, doi: 10.1109/ACCESS.2022.3212751.
    [14] J. Yu, X. Ye, and H. Li, “A high precision intrusion detection system for network security communication based on multi-scale convolutional neural network,” Futur. Gener. Comput. Syst., vol. 129, pp. 399–406, 2022, doi: https://doi.org/10.1016/j.future.2021.10.018.
    [15] M. Mulyanto, M. Faisal, S. W. Prakosa, and J. Leu, “Effectiveness of Focal Loss for Minority Classification in Network Intrusion Detection Systems,” Symmetry (Basel)., no. 18, 2021.
    [16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, no. January, pp. 321–357, 2002, doi: 10.1613/jair.953.
    [17] M. Mulyanto, S. W. Prakosa, M. Faisal, and J.-S. Leu, “Using Optimized Focal Loss for Imbalanced Dataset on Network Intrusion Detection System,” in IEEE Vehicular Technology Conference, 2022, vol. 2022-June. doi: 10.1109/VTC2022-Spring54318.2022.9861034.
    [18] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detection,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 2999–3007, 2017, doi: 10.1109/ICCV.2017.324.
    [19] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi: 10.1016/j.jisa.2019.102419.
    [20] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013, doi: 10.1109/TPAMI.2013.50.
    [21] M. Mulyanto, J.-S. Leu, M. Faisal, and W. Yunanto, “Weight embedding autoencoder as feature representation learning in an intrusion detection systems,” Comput. Electr. Eng., vol. 111, p. 108949, 2023, doi: https://doi.org/10.1016/j.compeleceng.2023.108949.
    [22] I. Al-Turaiki and N. Altwaijry, “A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection,” Big Data, vol. 9, no. 3, pp. 233–252, 2021, doi: 10.1089/big.2020.0263.
    [23] J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, “CNN-based network intrusion detection against denial-of-service attacks,” Electron., vol. 9, no. 6, pp. 1–21, 2020, doi: 10.3390/electronics9060916.
    [24] C. M. K. Ho, K. C. Yow, Z. Zhu, and S. Aravamuthan, “Network Intrusion Detection via Flow-to-Image Conversion and Vision Transformer Classification,” IEEE Access, vol. 10, no. September, pp. 97780–97793, 2022, doi: 10.1109/ACCESS.2022.3200034.
    [25] T. Kim, S. C. Suh, H. Kim, J. Kim, and J. Kim, “An Encoding Technique for CNN-based Network Anomaly Detection,” Proc. - 2018 IEEE Int. Conf. Big Data, Big Data 2018, pp. 2960–2965, 2019, doi: 10.1109/BigData.2018.8622568.
    [26] G. Andresini, A. Appice, and D. Malerba, “Nearest cluster-based intrusion detection through convolutional neural networks,” Knowledge-Based Syst., vol. 216, p. 106798, 2021, doi: 10.1016/j.knosys.2021.106798.
    [27] L. v. d Maaten and G. Hinton, “Visualizing Data using t-SNE,” J. Mach. Learn. Res., vol. 219, no. 1, pp. 1–48, 2008, doi: 10.1007/s10479-011-0841-3.
    [28] J. Sklansky, “Finding the Convex Hull of a Simple Polygon,” Pattern Recogn. Lett., vol. 1, pp. 79–83, 1982, [Online]. Available: https://doi.org/10.1016/0167-8655(82)90016-2
    [29] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull Algorithm for Convex Hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483, Dec. 1996, doi: 10.1145/235815.235821.
    [30] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based network anomaly detection,” Wirel. Telecommun. Symp., vol. 2018-April, pp. 1–5, 2018, doi: 10.1109/WTS.2018.8363930.
    [31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, 2012, vol. 25. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
    [32] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Int. Conf. Learn. Represent., 2021, [Online]. Available: http://arxiv.org/abs/2010.11929
    [33] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, 2017, vol. 30. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
    [34] A. Sharma, E. Vans, D. Shigemizu, K. A. Boroevich, and T. Tsunoda, “DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture,” Sci. Rep., vol. 9, no. 1, pp. 1–7, 2019, doi: 10.1038/s41598-019-47765-6.
    [35] B. Yan and G. Han, “Effective Feature Extraction via Stacked Sparse Autoencoder to Improve Intrusion Detection System,” IEEE Access, vol. 6, pp. 41238–41248, 2018, doi: 10.1109/ACCESS.2018.2858277.
    [36] N. Moustafa and J. Slay, “UNSW-NB15: A Comprehensive Data set for Network Intrusion Detection systems (UNSW-NB15 Network Data Set),” Mil. Commun. Inf. Syst. Conf., pp. 1–6, 2015, doi: 10.35940/ijrte.B1540.0982S1119.
    [37] H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions,” ACM Comput. Surv., vol. 52, no. 4, Aug. 2019, doi: 10.1145/3343440.
    [38] P. Choobdar, M. Naderan, and M. Naderan, “Detection and Multi-Class Classification of Intrusion in Software Defined Networks Using Stacked Auto-Encoders and CICIDS2017 Dataset,” Wireless Personal Communications, vol. 123, no. 1. pp. 437–471, 2022. doi: 10.1007/s11277-021-09139-y.
    [39] P. Sun et al., “DL-IDS: Extracting features using CNN-LSTM hybrid network for intrusion detection system,” Secur. Commun. Networks, vol. 2020, 2020, doi: 10.1155/2020/8890306.

    無法下載圖示 全文公開日期 2028/10/06 (校內網路)
    全文公開日期 2028/10/06 (校外網路)
    全文公開日期 2028/10/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE