簡易檢索 / 詳目顯示

研究生: 王剴勤
Kai-Chin Wang
論文名稱: 低鉑觸媒到非鉑觸媒應用於燃料電池
Low Platinum-based Catalysts to Non Platinum-based Catalysts for Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
王耀明
Yao-Ming Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 142
中文關鍵詞: 氧氣還原反應燃料電池核殼結構觸媒低鉑觸媒金屬有機骨架非貴金屬觸媒
外文關鍵詞: Oxygen reduction reaction, fuel cells, core-shell structure catalysts, low platinum catalysts, metal-organic framework, non-precious metal catalysts
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

質子交換膜燃料電池(PEMFC)是一種不錯的替代能源,因為其主要的產物為水。具有核-殼結構的奈米顆粒觸媒可以改善氧氣還原反應(ORR)活性和耐久性。TEM 分析核-殼結構的Pd@Pt3Co/C 證明Pt3Co 合金沉積在Pd 奈米顆粒上。Pd@Pt3Co/C 的ORR 活性優於其他觸媒(Pt/C、Pd/C 和Pd@Pt/C)。在穩定性測試中,顯示Pd@Pt3Co/C的半電位在20,000 圈循環後會先衰退,然後在接下來的10,000 圈循環後恢復。Pt/C、Pd/C、Pd@Pt/C 和Pd@Pt3Co/C 的PEMFC 最大功率密度分別為639.3、382.4、721.8 和854.0 mW cm-2,表明Pd@Pt3Co/C優於其他觸媒。經穩定性測試後,Pd@Pt3Co/C 的最大功率密度幾乎沒有明顯下降,證明Pd@Pt3Co/C 可以作為優異且耐用的觸媒。Pd@Pt3Co/C 可藉由Pt3Co 合金殼在Pd 核上的高利用率以及Pd 核與Pt3Co 合金殼之間的配體效應、晶格應變效應和協同作用,來提升氧氣還原反應的活性。
另一部份則是通過在ZIF-67 中共摻雜鐵和氮原子,並進行800°C之熱處理和酸洗處理, 最後可得到最高氧氣還原反應活性的Fe−N−Co@C-800-AL。另外,Fe−N−Co@C-800-AL 即使以線性掃描伏安法(LSV)進行30000 圈穩定性測試後,也沒有顯示出明顯的衰退。所製備的觸媒是由奈米顆粒(NPs) 隨機分佈在多芳烴碳上的多孔結構,其BET 比表面積為449.0 m2 g-1。XPS 證明Fe−N−Co@C-800-AL含有大量的pyridinic-N 和graphitic-N,可以顯著增強氧氣還原反應的活性。此外,XAS 顯示Co-Co 和Fe-Fe 的存在以及缺乏Co-Nx 部分,這意味著氧氣還原反應主要來自氮摻雜於碳且包覆過渡金屬奈米顆粒的結構上。這些發現表明Fe−N−Co@C-800-AL 具有多孔結構、高表面積和含氮官能基的存在,從而使其適合於氧氣還原反應。


The proton exchange membrane fuel cell (PEMFC) is a good source
of alternative energy because its main product is water. To increase the
catalytic activity and durability of the nanoparticles with the core-shell structure in the oxygen reduction reaction (ORR). TEM analysis confirms that the core-shell structure of Pd@Pt3Co/C comprises Pt3Co alloy that is deposited on Pd nanoparticles. The ORR activity of Pd@Pt3Co/C is better than that of other samples - Pt/C, Pd/C and Pd@Pt/C. The stability test of Pd@Pt3Co/C shows more decay after 20000 cycles and then recover during the next 10,000 cycles. The maximum power densities of Pd@Pt3Co/C is the highest than the others in the PEMFC. After the stability test, the maximum power density of Pd@Pt3Co/C shows almost no obviously decay, which confirms Pd@Pt3Co/C can act as the outstanding catalyst. The improved activity of Pd@Pt3Co/C is associated with the high utilization of Pt3Co shell on the Pd core, the ligand effect, the lattice strain effect and the synergic effect between Pd core and Pt3Co alloy shell.
Second work demonstrates Fe−N−Co@C-800-AL through co-doped iron and nitrogen atoms in a ZIF-67, followed by optimal pyrolysis at 800°C and the acid leaching process. Fe−N−Co@C-800-AL is highly active in an oxygen reduction reaction. In addition, Fe−N−Co@C-800-AL shows no obvious degradation even after potential cycling of half-cell measurement (30,000 cycles). The prepared material exhibits a porous structure composed of nanoparticles (NPs) that were randomly distributed
on poly−hydrocarbon structures with a BET surface area of 449.0 m2 g−1. XPS demonstrates that Fe−N−Co@C-800-AL contained large amounts of pyridinic nitrogen and graphitic nitrogen, which could significantly enhance the activity of the oxygen reduction reaction. Furthermore, XAS reveals the existence of Co−Co and Fe−Fe and a lack of Co−Nx moieties, which means an oxygen reduction reaction may occur on the microstructures of N-doped carbon with wrapped metal NPs (Co or Fe).
These findings reveal that Fe−N−Co@C-800-AL had a porous structure, high surface area, and presence of functional nitrogen, thereby making it suitable for oxygen reduction reaction.

中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第 一 章 緒論 1-1 能源的省思與再生 1-2 新興綠色能源-燃料電池 1-2-1 燃料電池的種類 1-2-2 質子交換膜燃料電池(PEMFC)介紹 1-2-3 鹼性陰離子交換膜燃料電池(AAEMFC)介紹 1-2-4 燃料電池內部構造 1-2-5 燃料電池極化現象 第 二 章 電化學原理與文獻探討 2-1 電化學原理 2-1-1 氧化還原反應 2-1-2 氧氣還原途徑 2-1-3 氧氣還原反應機制 2-1-4 氧氣還原反應之電化學催化 2-2 文獻回顧 2-2-1 白金之合金屬觸媒 2-2-2 白金之核-殼結構觸媒 2-2-3 氮摻雜之非貴金屬觸媒 2-2-4 金屬有機骨架之非貴金屬觸媒 第 三 章 研究動機 第 四 章 實驗儀器 4-1實驗材料及藥品 4-2 實驗流程 4-2-1 第一部分實驗流程圖 4-2-2 第二部分實驗流程圖 4-3 實驗儀器與設備 4-4 儀器分析原理 4-4-1 X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 4-4-2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 4-4-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 4-4-4 比表面積及孔徑分析儀(Surface Area & Mesopore Analyzer) 4-4-5 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 4-4-6 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 4-4-7 電化學分析儀 4-4-8 燃料電池性能測試機台 第 五 章 核-殼結構之PD@PT3CO/C作為氧氣還原觸媒應用於質子交換膜燃料電池 5-1 觸媒製備 5-1-1 Pt/C之製備 5-1-2 Pd/C之製備 5-1-3 Pd@Pt/C之製備 5-1-4 Pd@Pt3Co/C之製備 5-2 電極製備 5-2-1 觸媒工作電極之製備 5-2-2 膜電極組之製備 5-3 結果與討論 5-3-1 低鉑觸媒之X光繞射圖譜分析 5-3-2 低鉑觸媒之穿透式電子顯微鏡影像分析 5-3-3 低鉑觸媒之氧氣還原反應活性比較 5-3-4 Pd@Pt3Co/C觸媒之穩定性測試 5-3-5 Pd@Pt3Co/C觸媒之單電池測試 第 六 章 多孔複合材料作為氧氣還原觸媒應用於鹼性陰離子交換膜燃料電池 6-1 觸媒製備 6-1-1 ZIF-67之製備 6-1-2 Co@C-800-AL之製備 6-1-3 Fe−N−Co@C-800-AL之製備 6-2 電極製備 6-2-1 觸媒工作電極製備 6-2-2 膜電極組之製備 6-3 結果與討論 6-3-1 ZIF-67之X光繞射圖譜分析及掃描式顯微鏡影像分析 6-3-2 Fe-N-Co@C-800-AL之X光繞射圖譜分析 6-3-3 Fe-N-Co@C-800-AL之穿透式電子顯微鏡影像分析 6-3-4 Fe-N-Co@C-800-AL之氧氣還原反應活性比較 6-3-5 Fe-N-Co@C-800-AL之比表面積分析 6-3-6 Fe-N-Co@C-800-AL之X光電子能譜分析 6-3-7 Fe-N-Co@C-800-AL之X光吸收光譜分析 6-3-8 Fe-N-Co@C-800-AL觸媒之穩定性測試 6-3-9 Fe-N-Co@C-800-AL觸媒之單電池測試 第 七 章 結論 7-1 核-殼結構之PD@PT3CO/C作為氧氣還原觸媒應用於質子交換膜燃料電池 7-2 多孔複合材料作為氧氣還原觸媒應用於鹼性陰離子交換膜燃料電池 參考文獻

[1] 衣寶廉編著, 黃朝榮、林修正修訂, 燃料電池-原理與應用. 五南圖書出版股份有限公司, (2005).
[2] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Adv. Phys. Chem., 2012 (2012) 17.
[3] Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. Energy Combust. Sci., 66 (2018) 141-175.
[4] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells - Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
[5] K. Kinoshita, Electrochemical Oxygen Technology, in, New York : Wiley, 1992, pp. 19-26.
[6] L. Genies, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta, 44 (1998) 1317-1327.
[7] J.P. Hoare, The Electrochemistry of Oxygen. New York: John Wiley & Sons, (1968) 26-91.
[8] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep., 45 (2002) 117-229.
[9] B.E. Conway, Comprehensive Treatise of Electrochemistry. New York: Kluwer Acadwmic Pub, (1983) 26-91.
[10] C.-W. Liu, Y.-C. Wei, K.-W. Wang, Preparation and surface characterization of Pt-Au/C cathode catalysts with ceria modification for oxygen reduction reaction. Electrochem. Commun., 11 (2009) 1362-1364.
[11] C.-W. Liu, Y.-C. Wei, K.-W. Wang, Preparation and characterization of carbon-supported Pt-Au cathode catalysts for oxygen reduction reaction. J. Colloid Interface Sci., 336 (2009) 654-657.
[12] Y.-C. Wei, C.-W. Liu, Y.-W. Chang, C.-M. Lai, P.-Y. Lim, L.-D. Tsai, K.-W. Wang, The structure-activity relationship of Pd-Co/C electrocatalysts for oxygen reduction reaction. Int. J. Hydrogen Energy, 35 (2010) 1864-1871.
[13] T.-H. Yeh, C.-W. Liu, H.-S. Chen, K.-W. Wang, Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction. Electrochem. Commun., 31 (2013) 125-128.
[14] H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc., 135 (2013) 7130-7133.
[15] J.-E. Lim, U.J. Lee, S.H. Ahn, E. Cho, H.-J. Kim, J.H. Jang, H. Son, S.-K. Kim, Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid. Appl. Catal. B: Environ., 165 (2015) 495-502.
[16] K. Jukk, N. Kongi, K. Tammeveski, J. Solla-Gullon, J.M. Feliu, PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochem. Commun., 56 (2015) 11-15.
[17] H. Duan, C. Xu, Nanoporous PtPd Alloy Electrocatalysts with High Activity and Stability toward Oxygen Reduction Reaction. Electrochim. Acta, 152 (2015) 417-424.
[18] Z. Zhu, Y. Zhai, S. Dong, Facial synthesis of PtM (M = Fe, Co, Cu, Ni) Bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. ACS Appl. Mater. Interfaces, 6 (2014) 16721-16726.
[19] B. Han, C. Xu, Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy, 39 (2014) 18247-18255.
[20] D. Cheng, X. Qiu, H. Yu, Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying. PCCP, 16 (2014) 20377-20381.
[21] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Improved Oxygen Reduction Activity on Pt<sub>3</sub>Ni(111) via Increased Surface Site Availability. Science, 315 (2007) 493-497.
[22] V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. Int. Ed., 45 (2006) 2897-2901.
[23] J.-S. Do, Y.-T. Chen, M.-H. Lee, Effect of thermal annealing on the properties of Corich core-Ptrich shell/C oxygen reduction electrocatalyst. J. Power Sources, 172 (2007) 623-632.
[24] N.V. Long, M. Ohtaki, T.D. Hien, J. Randy, M. Nogami, A comparative study of Pt and Pt–Pd core–shell nanocatalysts. Electrochim. Acta, 56 (2011) 9133-9143.
[25] D. Wang, H.L. Xin, H. Wang, Y. Yu, E. Rus, D.A. Muller, F.J. Disalvo, H.D. Abruna, Facile synthesis of carbon-supported Pd-Co core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability with monolayer Pt decoration. Chem. Mater., 24 (2012) 2274-2281.
[26] K.G. Nishanth, P. Sridhar, S. Pitchumani, Carbon-supported Pt encapsulated Pd nanostructure as methanol-tolerant oxygen reduction electro-catalyst. Int. J. Hydrogen Energy, 38 (2013) 612-619.
[27] X. Ding, S. Yin, K. An, L. Luo, N. Shi, Y. Qiang, S. Pasupathi, B.G. Pollet, P.K. Shen, FeN stabilized FeN@Pt core-shell nanostructures for oxygen reduction reaction. J. Mater. Chem. A, 3 (2015) 4462-4469.
[28] A.S. Arico, A. Stassi, C. D'Urso, D. Sebastian, V. Baglio, Synthesis of Pd3Co1@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells. Chem. Eur. J., 20 (2014) 10679-10684.
[29] J. Yang, J.Y. Lee, Q. Zhang, W. Zhou, Z. Liu, Carbon-supported pseudo-core-shell pd-pt nanoparticles for ORR with and without methanol. J. Electrochem. Soc., 155 (2008) B776-B781.
[30] H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, C. Cai, Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J. Phys. Chem. C, 114 (2010) 11861-11867.
[31] Y. Zhang, T. Han, J. Fang, P. Xu, X. Li, J. Xu, C.-C. Liu, Integrated Pt2Ni alloy@Pt core-shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. J. Mater. Chem. A, 2 (2014) 11400-11407.
[32] S.-I. Choi, M. Shao, N. Lu, A. Ruditskiy, H.-C. Peng, J. Park, S. Guerrero, J. Wang, M.J. Kim, Y. Xia, Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction. ACS Nano, 8 (2014) 10363-10371.
[33] C.-H. Wang, H.-C. Hsu, K.-C. Wang, Iridium-decorated Palladium-Platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell. J. Colloid Interface Sci., 427 (2014) 91-97.
[34] J.-H. Jang, J. Kim, Y.-H. Lee, I.Y. Kim, M.-H. Park, C.-W. Yang, S.-J. Hwang, Y.-U. Kwon, One-pot synthesis of core-shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells. Energy and Environmental Science, 4 (2011) 4947-4953.
[35] P. Mani, R. Srivastava, P. Strasser, Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi 3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources, 196 (2011) 666-673.
[36] M. Oezaslan, F. Hasche, P. Strasser, Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J. Electrochem. Soc., 159 (2012) B394-B405.
[37] J.R.C. Salgado, E. Antolini, E.R. Gonzalez, Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: The effect on the performance of the catalyst. J. Power Sources, 138 (2004) 56-60.
[38] Q. Huang, H. Yang, Y. Tang, T. Lu, D.L. Akins, Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction. Electrochem. Commun., 8 (2006) 1220-1224.
[39] Y. Lu, Y. Jiang, W. Chen, PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy, 2 (2013) 836-844.
[40] F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, R.R. Adzic, Pt monolayer electrocatalysts for O2 reduction: PdCo/C substrate-induced activity in alkaline media. J. Solid State Electrochem., 12 (2008) 399-407.
[41] L. Dubau, F. Maillard, M. Chatenet, J. Andre, E. Rossinot, Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim. Acta, 56 (2010) 776-783.
[42] C. Koenigsmann, A.C. Santulli, K. Gong, M.B. Vukmirovic, W.-P. Zhou, E. Sutter, S.S. Wong, R.R. Adzic, Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc., 133 (2011) 9783-9795.
[43] A. Maghsodi, M.R. Milani Hoseini, M. Dehghani Mobarakeh, M. Kheirmand, L. Samiee, F. Shoghi, M. Kameli, Exploration of bimetallic Pt-Pd/C nanoparticles as an electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci., 257 (2011) 6353-6357.
[44] M.-K. Min, J. Cho, K. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta, 45 (2000) 4211-4217.
[45] S.-P. Lin, K.-W. Wang, C.-W. Liu, H.-S. Chen, J.-H. Wang, Trends of Oxygen Reduction Reaction on Platinum Alloys: A Computational and Experimental Study. J. Phys. Chem. C, 119 (2015) 15224-15231.
[46] J. R, A New Fuel Cell Cathode Catalyst. Nature, (1964) 1212-1213.
[47] M. Lefe`vre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science, 324 (2009) 71-74.
[48] M. Lefevre, J.P. Dodelet, Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta, 48 (2003) 2749-2760.
[49] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature, 443 (2006) 63-66.
[50] D. Yu, Q. Zhang, L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. J. Am. Chem. Soc., 132 (2010) 15127–15129.
[51] D.H. Lee, W.J. Lee, W.J. Lee, S.O. Kim, Y.H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett., 106 (2011) 175502.
[52] T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshim, J.-i. Ozaki, Carbon Alloy Catalysts Active Sites for Oxygen Reduction Reaction. J. Phys. Chem. C, 112 (2008) 14706–14709.
[53] S.-F. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J.-i. Ozaki, S. Miyata, First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Phys. Rev. B, 80 (2009).
[54] S.v. Dommele, K.P.d. Jong, J.H. Bitter, Nitrogen-containing carbon nanotubes as solid base catalysts. Chem. Commun., (2006) 4859.
[55] K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 48 (2010) 191-200.
[56] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J. Power Sources, 187 (2009) 93-97.
[57] M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv., 5 (2015) 59495-59505.
[58] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Power Sources, 188 (2009) 38-44.
[59] Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Adv. Energy Mater., 2 (2012) 884-888.
[60] P. Wang, Z. Wang, L. Jia, Z. Xiao, Origin of the catalytic activity of graphite nitride for the electrochemical reduction of oxygen: geometric factors vs. electronic factors. Phys. Chem. Chem. Phys., 11 (2009) 2730-2740.
[61] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5 (2011) 4350-4358.
[62] S. Ma, G.A. Goenaga, A.V. Call, D.-J. Liu, Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J., 17 (2011) 2063-2067.
[63] T. Palaniselvam, B.P. Biswal, R. Banerjee, S. Kurungot, Zeolitic imidazolate framework (ZIF)-derived, hollow-core, nitrogen-doped carbon nanostructures for oxygen-reduction reactions in PEFCs. Chem. Eur. J., 19 (2013) 9335-9342.
[64] F. Afsahi, S. Kaliaguine, Non-precious electrocatalysts synthesized from metal-organic frameworks. J. Mater. Chem. A, 2 (2014) 12270-12279.
[65] W. Chaikittisilp, N.L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks. Chem. Eur. J., 20 (2014) 4217-4221.
[66] P. Miao, G. Li, G. Zhang, H. Lu, Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen. J. Energy Chem., 23 (2014) 507-512.
[67] G. Song, Z. Wang, L. Wang, G. Li, M. Huang, F. Yin, Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese J. Catal., 35 (2014) 185-195.
[68] X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A, 2 (2014) 14064-14070.
[69] W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A, 2 (2014) 11606-11613.
[70] W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc., 136 (2014) 14385-14388.
[71] J. Li, Y. Chen, Y. Tang, S. Li, H. Dong, K. Li, M. Han, Y.-Q. Lan, J. Bao, Z. Dai, Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A, 2 (2014) 6316-6319.
[72] L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale, 6 (2014) 6590-6602.
[73] X. Ma, X. Zhao, J. Huang, L. Sun, Q. Li, X. Yang, Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction. ACS Appl. Mater. Interfaces, 9 (2017) 21747-21755.
[74] W. Zhang, R. Wang, H. Wang, Z. Lei, High Performance Carbon-Supported Core@Shell PdSn@Pt Electrocatalysts for Oxygen Reduction Reaction. Fuel Cells, 10 (2010) 734-739.
[75] B. Li, Z. Yan, Q. Xiao, J. Dai, D. Yang, C. Zhang, M. Cai, J. Ma, Highly active carbon-supported Pt nanoparticles modified and dealloyed with Co for the oxygen reduction reaction. J. Power Sources, 270 (2014) 201-207.
[76] S. Takenaka, A. Hirata, E. Tanabe, H. Matsune, M. Kishida, Preparation of supported Pt-Co alloy nanoparticle catalysts for the oxygen reduction reaction by coverage with silica. J. Catal., 274 (2010) 228-238.
[77] H. Wang, X. Yuan, D. Li, X. Gu, Dendritic PtCo alloy nanoparticles as high performance oxygen reduction catalysts. J. Colloid Interface Sci., 384 (2012) 105-109.
[78] Z.Q. Tian, S.P. Jiang, Y.M. Liang, P.K. Shen, Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B, 110 (2006) 5343-5350.
[79] L. Qiao, M. Liao, S. Chen, Z. Wei, S. Zhang, Synthesis of Pt3Ni-based functionalized MWCNTs to enhance electrocatalysis for PEM fuel cells. J. Solid State Electrochem., 18 (2014) 1893-1898.
[80] Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, Oxygen reduction reaction kinetics of SO2 -contaminated Pt3 Co and Pt/vulcan carbon electrocatalysts. J. Electrochem. Soc., 156 (2009) B848-B855.
[81] S.-I. Choi, S.-U. Lee, W.Y. Kim, R. Choi, K. Hong, K.M. Nam, S.W. Han, J.T. Park, Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. ACS Appl. Mater. Interfaces, 4 (2012) 6228-6234.
[82] H. Yang, W. Vogel, C. Lamy, N. Alonso-Vante, Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B, 108 (2004) 11024-11034.
[83] F.-J. Lai, W.-N. Su, L.S. Sarma, D.-G. Liu, C.-A. Hsieh, J.-F. Lee, B.-J. Hwang, Chemical dealloying mechanism of bimetallic pt-co nanoparticles and enhancement of catalytic activity toward oxygen reduction. Chem. Eur. J., 16 (2010) 4602-4611.
[84] M. Oezaslan, P. Strasser, Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources, 196 (2011) 5240-5249.
[85] Y. Huang, M. Garcia, S. Habib, J. Shui, F.T. Wagner, J. Zhang, J. Jorne, J.C.M. Li, Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. J. Mater. Chem. A, 2 (2014) 16175-16180.
[86] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B, 106 (2002) 4181-4191.
[87] C.L. Chiang, K.S. Lin, S.S. Dwitya, Enhancement of CO2 adsorption and separation for non-porous Zn/Co azolate frameworks via ethanol-induced structural transformation. J. Taiwan Inst. Chem. Eng., 98 (2019) 99-112.
[88] J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B.Y. Xia, G. Feng, M. Liu, L. Huang, Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis. Adv. Energy Mater., 9 (2019) 1900149.
[89] C. Li, C. He, F. Sun, M. Wang, J. Wang, Y. Lin, Incorporation of Fe3C and Pyridinic N Active Sites with a Moderate N/C Ratio in Fe–N Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. ACS Appl. Nano Mater., 1 (2018) 1801-1810.
[90] E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi, Z. Wen, Multifunctional high-activity and robust electrocatalyst derived from metal-organic frameworks. J. Mater. Chem. A, 4 (2016) 17288-17298.
[91] Z. Liu, H. Nie, Z. Yang, J. Zhang, Z. Jin, Y. Lu, Z. Xiao, S. Huang, Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 5 (2013) 3283-3288.
[92] D.-W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. Angew. Chem. Int. Ed., 47 (2008) 373-376.
[93] Y. Bai, B. Yi, J. Li, S. Jiang, H. Zhang, Z. Shao, Y. Song, A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese J. Catal., 37 (2016) 1127-1133.
[94] H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye, D.-J. Liu, ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl. Catal. B: Environ., 205 (2017) 55-67.
[95] H. Zhong, Y. Luo, S. He, P. Tang, D. Li, N. Alonso-Vante, Y. Feng, Electrocatalytic cobalt nanoparticles interacting with nitrogendoped carbon nanotube in situ generated from a metal-organic framework for the oxygen reduction reaction. ACS Appl. Mater. Interfaces, 9 (2017) 2541-2549.
[96] Z. Hu, Z. Zhang, Z. Li, M. Dou, F. Wang, One-Step Conversion from Core-Shell Metal-Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction. ACS Appl. Mater. Interfaces, 9 (2017) 16109-16116.
[97] W. Xia, R. Zou, L. An, D. Xia, S. Guo, A metal-organic framework route to in situ encapsulation of Co@Coinf3/infOinf4/inf@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy and Environmental Science, 8 (2015) 568-576.
[98] A. Aijaz, J. Masa, C. Rosler, H. Antoni, R.A. Fischer, W. Schuhmann, M. Muhler, MOF-Templated Assembly Approach for Fe3C Nanoparticles Encapsulated in Bamboo-Like N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. Chem. Eur. J., 23 (2017) 12125-12130.
[99] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction. Adv. Mater., 28 (2016) 2337-2344.
[100] J. Xiao, C. Zhao, C. Hu, J. Xi, S. Wang, Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst. J. Power Sources, 348 (2017) 183-192.
[101] Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui, J. Chen, Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater., 4 (2014).
[102] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy and Environmental Science, 5 (2012) 7936-7942.
[103] A. Zhao, J. Masa, M. Muhler, W. Schuhmann, W. Xia, N-doped carbon synthesized from N-containing polymers as metal-free catalysts for the oxygen reduction under alkaline conditions. Electrochim. Acta, 98 (2013) 139-145.
[104] H. Li, X. Cheng, F.-B. Weng, A. Su, Y.-C. Chiang, Nitrogen-doped carbon nanotubes prepared at different temperatures for oxygen reduction reaction. J. Electrochem. Soc., 161 (2014) F1140-F1145.
[105] W. Wei, H. Ge, L. Huang, M. Kuang, A.M. Al-Enizi, L. Zhang, G. Zheng, Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction. J. Mater. Chem. A, 5 (2017) 13634-13638.
[106] H.-C. Huang, Y.-C. Lin, S.-T. Chang, C.-C. Liu, K.-C. Wang, H.-P. Jhong, J.-F. Lee, C.-H. Wang, Effect of a sulfur and nitrogen dual-doped Fe–N–S electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A, 5 (2017) 19790-19799.
[107] C.-T. Hung, N. Yu, C.-T. Chen, P.-H. Wu, X. Han, Y.-S. Kao, T.-C. Liu, Y. Chu, F. Deng, A. Zheng, S.-B. Liu, Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A, 2 (2014) 20030-20037.
[108] K. Simmance, G. Sankar, R.G. Bell, C. Prestipino, W.v. Beek, Tracking the formation of cobalt substituted ALPO-5 using simultaneous in situ X-ray diffraction and X-ray absorption spectroscopy techniques. PCCP, 12 (2010) 559-562.
[109] J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler, W. Schuhmann, MnxOy/NC and CoxOy/NC Nanoparticles Embedded in a Nitrogen‐Doped Carbon Matrix for High‐Performance Bifunctional Oxygen Electrodes. Angew. Chem. Int. Ed., 53 (2014) 8508-8512.
[110] B. Pattengale, S. Yang, J. Ludwig, Z. Huang, X. Zhang, J. Huang, Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications. J. Am. Chem. Soc., 138 (2016) 8072-8075.
[111] F. Hillman, J.M. Zimmerman, S.-M. Paek, M.R.A. Hamid, W.T. Lim, H.-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers. J. Mater. Chem. A, 5 (2017) 6090-6099.
[112] K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang, Y. Chen, C. Yuan, X. Feng, U. Scherf, Synergetic Contribution of Boron and Fe–Nx Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett., 3 (2018) 252-260.
[113] Q.-L. Zhu, W. Xia, L.-R. Zheng, R. Zou, Z. Liu, Q. Xu, Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Lett., 2 (2017) 504-511.
[114] H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. Guo, Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 35 (2017) 9-16.
[115] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed., 55 (2016) 10800-10805.
[116] Q. Wang, Z.-Y. Zhou, Y.-J. Lai, Y. You, J.-G. Liu, X.-L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian, S.-G. Sun, Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing. J. Am. Chem. Soc., 136 (2014) 10882-10885.
[117] P. Zhao, X. Hua, W. Xu, W. Luo, S. Chen, G. Cheng, Metal-organic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catal. Sci. Technol., 6 (2016) 6365-6371.
[118] T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang, X. Wang, B. Liu, H. Zheng, S. Qiao, R. Xu, Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci., 9 (2016) 2563-2570.
[119] L. Huang, X. Zhang, Y. Han, Q. Wang, Y. Fang, S. Dong, In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A, 5 (2017) 18610-18617.
[120] J.A. Varnell, E.C.M. Tse, C.E. Schulz, T.T. Fister, R.T. Haasch, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun., 7 (2016) 12582.
[121] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat. Commun., 6 (2015) 7343.
[122] A. Pavlisic, P. Jovanovic, V.S. Selih, M. Sala, N. Hodnik, M. Gaberscek, Platinum Dissolution and Redeposition from Pt/C Fuel Cell Electrocatalyst at Potential Cycling. J. Electrochem. Soc., 165 (2018) F3161-F3165.
[123] L. Zhang, X. Wang, R. Wang, M. Hong, Structural Evolution from Metal-Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chem. Mater., 27 (2015) 7610-7618.
[124] Y. Fang, X. Li, F. Li, X. Lin, M. Tian, X. Long, X. An, Y. Fu, J. Jin, J. Ma, Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst. J. Power Sources, 326 (2016) 50-59.
[125] H.-S. Lu, H. Zhang, R. Liu, X. Zhang, H. Zhao, G. Wang, Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Appl. Surf. Sci., 392 (2017) 402-409.
[126] J. Qi, N. Benipal, D.J. Chadderdon, J. Huo, Y. Jiang, Y. Qiu, X. Han, Y.H. Hu, B.H. Shanks, W. Li, Carbon nanotubes as catalysts for direct carbohydrazide fuel cells. Carbon, 89 (2015) 142-147.
[127] J. Sanetuntikul, C. Chuaicham, Y.-W. Choi, S. Shanmugam, Investigation of hollow nitrogen-doped carbon spheres as non-precious Fe–N4based oxygen reduction catalysts. J. Mater. Chem. A, 3 (2015) 15473-15481.
[128] D. Yang, H. Yu, G. Li, Y. Zhao, Y. Liu, C. Zhang, W. Song, Z. Shao, Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells. J. Power Sources, 267 (2014) 39-47.
[129] L. Zeng, T.S. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. J. Mater. Chem. A, 3 (2015) 1410-1416.
[130] C.-H. Wang, C.-W. Yang, Y.-C. Lin, S.-T. Chang, S.L.Y. Chang, Cobalt-iron(II,III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell. J. Power Sources, 277 (2015) 147-154.
[131] A. Arunchander, M. Vivekanantha, S.G. Peera, A.K. Sahu, MnO–nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells. RSC Adv., 6 (2016) 95590-95600.
[132] A. Arunchander, S.G. Peera, S.K. Panda, S. Chellammal, A.K. Sahu, Simultaneous co-doping of N and S by a facile in-situ polymerization of 6-N,N-dibutylamine-1,3,5-triazine-2,4-dithiol on graphene framework: An efficient and durable oxygen reduction catalyst in alkaline medium. Carbon, 118 (2017) 531-544.
[133] S.K. Singh, V. Kashyap, N. Manna, S.N. Bhange, R. Soni, R. Boukherroub, S. Szunerits, S. Kurungot, Efficient and Durable Oxygen Reduction Electrocatalyst Based on CoMn Alloy Oxide Nanoparticles Supported Over N-Doped Porous Graphene. ACS Catal., 7 (2017) 6700-6710.
[134] A. Arunchander, S.G. Peera, V.V. Giridhar, A.K. Sahu, Synthesis of Cobalt Sulfide-Graphene as an Efficient Oxygen Reduction Catalyst in Alkaline Medium and Its Application in Anion Exchange Membrane Fuel Cells. J. Electrochem. Soc., 164 (2017) F71-F80.

無法下載圖示 全文公開日期 2025/01/03 (校內網路)
全文公開日期 2025/01/03 (校外網路)
全文公開日期 2025/01/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE