簡易檢索 / 詳目顯示

研究生: 黃鈺菱
Yu-Ling Huang
論文名稱: 陽極層離子源濺鍍模組之開發及應用
Development and application study of an ion beam sputter module utilizing an integrated anode layer ion source
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 46
中文關鍵詞: 離子束濺鍍
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗設計並製造一種利用陽極層離子源的離子束濺鍍模組。此模組將一倒置的環形陽極層離子源與濺鍍靶材做結合,以減少所需的真空腔體。利用此離子束濺鍍模組將氧化銀沉積在石英基板上。研究結果顯示,銀僅在氧氣分壓大於0.8的條件下,即可完全氧化;在陽極電壓700 V 的條件下,可得到 (111) 優選結構的氧化銀;將陽極電壓提升至1500 V,結果顯示為晶面 (200)的氧化銀。所有樣品皆能找到兩個能隙,當陽極電壓由700 V 提升至1500 V 時,能隙分別由 1.0 及 2.6 eV 提升至 2.0 及 2.8 eV,此結果歸因於濺鍍材料的動能增加,使 AgO 裂解成 Ag2O。


An integrated ion beam sputter deposition module utilizing an anode layer ion source has been designed and fabricated. An inverted annular-shaped anode layer ion source is integrated with a sputtering target to reduce required vacuum volume. Silver oxide is deposited on quartz substrate utilizing this ion beam sputter module. Experimental results show that Ag is fully oxidized only with oxygen partial flow rate higher than 0.8. With an anode voltage of 700 V, silver oxide with (111) preferred orientation was obtained. Increasing anode voltage to 1500 V results in (200) orientated silver oxide thin films. Two bandgaps can be identified from all samples that increase from 1.0 and 2.6 eV to 2.0 and 2.8 eV as anode voltage increases from 700 to 1500 V, respectively. This is attributed due to the increased kinetic energy of sputtered material that results in in reduction of AgO to Ag2O.

論文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 第二章 文獻回顧 2.1 濺鍍 2.1.1濺鍍原理 2.1.2磁控濺鍍 2.1.3反應式濺鍍 2.1.4 離子束濺鍍 2.1.5 離子束濺鍍優點 2.1.6陽極層離子源離子束濺鍍 2.2薄膜成長理論 2.2.1薄膜成長與成核 2.3 AgxO特性簡介 2.3.1 AgxO簡介 2.3.2 AgxO能隙 第三章 實驗步驟與儀器 3.1 實驗設備及流程 3.1.1 實驗流程 3.2 特性分析儀器 3.2.1 二次質譜儀(Second ion mass spectrometer; SIMS) 3.2.2薄膜厚度輪廓測量儀(α-step) 3.2.3 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FE-SEM) 3.2.4 X光繞射分析儀 (X-ray diffraction, XRD) 3.2.5 穿透率量測 3.2.6 計算吸收係數及能隙 第四章 實驗結果與討論 4.1不同陽極層電壓下沉積氧化銀 4.1.1 X-ray繞射儀分析 4.1.2場發射掃描式電子顯微鏡(FE-SEM)分析 4.1.3能隙計算結果 4.2陽極層離子束濺鍍模組特點及優化 4.2.1陽極層離子束濺鍍模組特點 4.2.2陽極層離子束濺鍍模組優化 4.2.3薄膜均勻度分析 第五章 結論與未來展望 參考文獻

[1] Y. C. Her, Y. C. Lan, W. C. Hsu and S. Y. Tsai, “The Characteristics of Reactively Sputtered AgOx Films Prepared at Different Oxygen Flow Ratios and Its Effect on Super-Resolution Near-Field Properties,” JJAP, vol. 43, pp. 267-272, 2004.
[2] G. Saroja, V. Vasu and N. Nagarani, “Optical Studies of Ag2O Thin Film Prepared by Electron Beam Evaporation Method,” OJMetal, vol. 3, pp. 57-63, 2003.
[3] R. Gordon, “Chemical vapor deposition of coatings on glass,” J. Non-Cryst. Solid, vol. 218, pp. 81-91, 1997.
[4] O. Beier, A. Pfuch, K. Horn, S. Spange, M. Ramm, E. Jager, B. Grunler and A. Schimanski, “Novel Possibilities to create functional thin films by using cold atmospheric pressure plasma enhanced CVD techniques,” Nanocon, vol. 16, pp. 1-7, 2013.
[5] H. E. Mehdi, M. R. Hantehzadeh and Sh. Valedbagi , “ Physical Properties of Silver Oxide Thin Film Prepared by DC Magnetron Sputtering: Effect of Oxygen Partial Pressure During Growth,” J Fusion Energ, vol.32, pp. 28-33, 2013.
[6] U. K. Barik, S. Srinivasan, C.L. Nagendra, A. Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Films, vol.429, pp. 129-134, 2013.
[7] J. H. Qiu, P. Zhou, X. Y. Gao, J. N. Yu, S. Y. Wang, J. Li, Y. X. Zheng, Y. M. Yang, Q. H. Song and L. Y. Chen, “Ellipsometric Study of the Optical Properties of Silver Oxide Prepared by Reactive Magnetron Sputtering,” J. Korean Chem. Soc., vol 46, pp. 269-275, 2005.
[8] H. Entezar Mehdi, M. R. Hantehzadeh and Sh. Valedbagi, “Physical Properties of Silver Oxide Thin Film Prepared by DC Magnetron Sputtering: Effect of Oxygen Partial Pressure During Growth,” J Fusion Energ, vol. 32, pp. 28-33, 2013.
[9] U. K. Barik, S. Srinivasan, C. L. Nagendra and A. Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Films, vol. 429, pp. 129-134, 2013.
[10] C. Bundesmann, T. Lautenschläger, E. Thelander, D. Spemann, “Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties,” Nucl Instrum Meth B, vol. 395, pp.17-23, 2017.
[11] J. L. He, W. Z. Li, L. D. Wang, J. Wang, H. D. Li, “Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect,” Nucl Instrum Meth B, vol.135, pp. 512-516, 1998.
[12] A. Valentini, A. Convertino, M. Alvisi, R. Cingolani, T. Ligonzo, R. Lamendola and L. Tapfer, “Synthesis of silicon carbide thin films by ion beam sputterin,” Thin Solid Films, vol.335 pp. 80-84,1998.
[13] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., vol. 142, pp. 87-101, 1852.
[14] S. Masato, and U. Keisuke, Patent No. TW 201,447,005 A(16 December, 2014)
[15] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., vol. 171, pp. 151-156, 2001.
[16] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, Vol. 117, pp. 163-172, 1984.
[17] C. C. Lee, J. C. Hsu, D. T. Wei, an J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[18] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
[19] S. B. Krupani hi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
[20] Y. Ishikawa; N. Kanda and A. Fujiwara, Patent No. 5,178,738(10 May, 1993)
[21] M. Varasi, C. Misiano, and L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films, vol. 117, pp. 163-172, 1984.
[22] S. Pochon , D. Pearson. (2010). Ion Beam Deposition [Online].
[23] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, vol. 308-309, pp. 74-78, 1997.
[24] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., vol. 16, pp. 171-174, 1979.
[25] Y. Suzuki, T.Yitsuya, K.Takiguchi, M. Yoshitake, and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,” Appl. Surf, Sci., vol. 33-34, pp. 1114-1119, 1988.
[26] S. Nishizawa, T. Tsurumi, H. Hyodo, Y. Ishibashi, N. Ohashi, M. Yamane, and O. Fukunaga, “Structural changes in ZnO/NiO artificial superlattices made by ion beam sputtering,” Thin Solid Films, vol. 302, pp. 133-139, 1997.
[27] D. J. Lichtenwalner, C. N. Soble II, and R. R. Woolcott Jr, “Uniform deposition of YBa2Cu3O7−δ films over large areas using ion‐beam sputtering,” J. Appl. Phys, vol. 70, pp. 6952-6957, 1991.
[28] J. P. Rivikre, D. Texier, J. Delafond, M. Jaouen, E. L. Mathe, and J. Chaumont, “Formation of the crystalline β-C3N4 phase by dual ion beam sputtering deposition,” Mater. Lett., vol. 22, pp. 115-118, 1995.
[29] K. Yamaya, Y. Yamaki, H. Nakanishi, and S. Chichibu, “Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering,” Appl. Phys. Lett., vol. 72, pp. 235-237, 1998.
[30] D. Kim, Y. Han, J. Cho, and S. Koh, “Low temperature deposition of ITO thin films by ion beam sputtering,” Thin Solid Films, vol. 377-378, pp. 81-86, 2000.
[31] J. M. Tucson, Patent No. US 7,259,378 B2(21 August, 2007)
[32] R. H. Petrmichl, Patent No. 6,987,342 B2(17 January, 2006)
[33] L. Davis, “Properties of transparent conducting oxides deposited at room Temperature,” Thin Solid Films, vol. 236, pp. 1-5, 1993.
[34] C. Argile, G. E. Rhead, “Absorbed layer and thin film growth modes monitored by augur electron spectroscopy,” Surf. Sci. Rep., vol. 10, pp. 277-356, 1989.
[35] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science,” Macmillan Publishing Co., New York, pp. 428, 1992.
[36] M. Ohring, “The materials science of thin films,” Academic Press, Boston, p.197, 1992.
[37] A. N. Mansour, “Evidence for an Ag4O3 phase of silver oxide,” J. Phys. Chem.,
vol. 94, pp. 1006-1010, 1990.
[38] P. Norby, R. Dinnebier, and A. N. Fitch, “Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3,” Inorg. Chem., vol. 41, pp. 3628-3637, 2002.
[39] W. C. Hsu, J. Y. Chyan, Y. S. Lu, and J. A. Yeh, “Electroluminescence of out-of-plane silicon nanowire/silver oxide/silver nanodendrite heterostructures,” Opt. Mater. Express, vol. 1, pp. 1210-1215, 2011.
[40] Y. Chiu, U. Rambabu, M. H. Hsu, H. P. D. Shieh, C. Y. Chen, and H. H. Lin, “Fabrication and nonlinear optical properties of nanoparticle silver oxide films,” J. Appl. Phys., vol. 94 , pp. 1996-2001, 2003.
[41] X. Y. Zhang, X. Y. Pan, Q. F. Zhang, B. X. Xu, H. B. Jiang, C. L. Liu, Q. H. Gong, and J. L. Wu, “Synthesis of silver oxide nanoscale thin films and photo-activated dynamic luminescence from their nanoparticles,” Acta. Phys. Chim. Sin., vol. 19, pp. 203-207, 2003.
[42] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki, “Direct electrodeposition of 1.46 eV bandgap silver(I) oxide semiconductor films by electrogenerated acid,” Chem. Mater., vol. 20, pp. 1254-1256, 2008.
[43] Y. Abe, T. Hasegawa, M. Kawamura, and K. Sasaki, “Characterization of Ag oxide thin films prepared by reactive RF sputtering,” Vacuum., vol. 76, pp. 1-6, 2004.
[44] L. H. Tjeng, M. B. J. Meinders, J. V. Elp, J. Ghijsen, and G. A. Sawatzky, “Electronic structure of Ag2O,” Phys. Rev. B, vol. 41, pp. 3190-3199, 1990.
[45] P. Norby, R. Dinnebier, and A. N. Fitch, “Decomposition of silver carbonate; the crystal structure of two high-temperature modifications of Ag2CO3,” Inorg. Chem., vol. 41, pp. 3628-3637, 2002.
[46] V. Scatturin, P. L. Bellon, and A. J. Salkind, ”The structure of silver oxide determined by means of neutron diffraction,” J. Electrochem. Soc., vol. 108, pp. 819-822, 1961.
[47] M. Bielmann, P. Schwaller, P. Ruffieux, O. Gröning, L. Schlapbach, and P. Gröning, “AgO investigated by photoelectron spectroscopy: Evidence for mixed valence,” Phys. Rev. B, vol. 65, pp. 54311-54315, 2002.
[48] J. P. Allen, D. O. Scanlon, and G. W. Watson, “Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory,” Phys. Rev. B, vol. 81, pp. 1103-1106, 2010.
[49] K. Yvon, A. Bezinge, P. Tissot, and P. Fischer, “Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO,” J. Solid State Chem., vol. 65, pp. 225-230, 1986.
[50] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide : A combined XRD, FT-IR and Raman spectroscopic study,” Phys. Chem. Chem. Phys., vol. 3, pp. 3838-3845, 2001.
[51] L. H. Tjeng, M. B. J. Meinders, J. V. Elp, J. Ghijsen, and G. A. Sawatzky, “Electronic structure of Ag2O,” Phys. Rev. B, vol. 41, pp. 3190-3199, 1990.
[52] A. J. Varkey and A. F. Fort, “Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition,” Sol. Energy Mater. Sol. Cells, vol. 29, pp. 253-259, 1993.
[53] J. F. Pierson, D. Wiederkehr and A. Billard, “Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Films, vol. 478, pp. 196-205, 2005.
[54] S. B. Rivers, G. Bernhardt, M. W. Wright, D. J. Frankel, M. M. Steeves and R. J. Lad, “Structure, conductivity, and optical absorption of Ag2−xO films,” Thin Solid Films, vol. 515, pp. 8684-8688, 2007.
[55] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka, and M. Izaki ,“Direct electrodeposition of 1.46 eV bandgap silver(I) oxide semiconductor films by electrogenerated acid,” Chem. Mater., vol. 20, pp. 1254-1256, 2008.
[56] X. Y. Gao, H. L. Feng, J. M. Ma, Z. Y. Zhang, J. X. Lu, Y. S. Chen, S. E. Yang, and J. H. Gu, “Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-Oscillator model,” Phys. Rev. B, vol. 405, pp. 1922-1926, 2010.
[57] J. P. Allen, D. O. Scanlon, and G. W. Watson, “Electronic structures of silver oxides,” Phys. Rev. B, vol. 84, pp. 5141-5154, 2011.
[58] 張梁興、凌永健, “二次離子質譜儀在微電子工業上的應用,” 電子發展月刊, vol. 149, pp. 50-59, 1990.
[59] H. J. Kim, J. W. Bae, J. S. Kim, K. S. Kim, Y. C. Jang, G. Y. Yeom, and N. E.Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, vol. 377-378, pp. 115-121, 2000.
[60] J. Tauc, R. Griogorovici, and A. Vaucu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., vol. 15, no. 2, pp. 627-637, 1966.

無法下載圖示 全文公開日期 2022/05/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE