簡易檢索 / 詳目顯示

研究生: 曹凱皓
Kai-Hao Tsau
論文名稱: 密度泛函理論於碳酸乙烯酯在LixMn2O4 正極表面上的吸附與分解機制之研究
Ethylene Carbonate Adsorption and Decomposition on LixMn2O4 Cathode: A DFT Study
指導教授: 江志強
Jyh-Chiang, Jiang
口試委員: 林志興
Jyh-Shing, Lin
黃炳照
Bing-Joe, Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 62
中文關鍵詞: 第一原理計算鋰離子電池碳酸乙烯酯鋰猛氧化物尖晶石結構表面催化分解正極材料陰極材料固態可滲透介面膜(SPI)
外文關鍵詞: First principle calculation
相關次數: 點閱:254下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技的發展,人們對於能源的需求逐漸增加,對於如何有效的儲存所產生的能源亦成為一個重要的課題。在眾多電能儲能技術上,鋰電池扮演著非常重要的角色,是目前商業應用上最廣的供電來源。
在鋰電池正極表面由電解液分子吸附並分解於其表面上所形成的薄膜,直接地影響整顆電池的效能,包括了其穩定性、電容量以及循環次數等。本論文中使用了第一原理(first principle),計算碳酸乙烯酯(ethylene carbonate, EC)分別在半充電與完全放電的尖晶石結構LixMn2O4 (100)催化表面上的吸附與分解的機制,利用GGA+U方法,找到四種穩定的吸附模式,利用態密度(Density of State, DOS)、投影態密度(Projected Density of State, PDOS)以及電荷密度差(Electron Density Difference, EDD)分析,探討其吸附後電子性質與組態的變化。而分解反應中則是以Climbing Image Nudged Elastic Band (CINEB)的方法,搜尋過度態。在考慮過所有的機制後,我們發現雖然EC在完全放電的表面上的吸附能較高,但是EC在半充電的表面較容易進行分解。


The development of electrochemical energy storage technologies, such as lithium-ion batteries (LIBs), will play a grand role in the advancement of alternative renewable energy sources. The adsorption and decomposition mechanism of electrolyte on the cathode surface of LIBs is one of the governing factors which control the stability, capacity, and cyclic life. In this work, first principles calculations are used to study the adsorption and decomposition reaction mechanisms of ethylene carbonate (EC) on the (100) surface of half-charged Li0.6Mn2O4, and the fully discharged LiMn2O4. The adsorption strength and electronic properties of various configurations are discussed by using density of states (DOS), projected density of states (PDOS) and electron density difference (EDD). Moreover, the initial decomposition mechanisms of EC on the surfaces is investigated by examining the minimum energy path between two minima using the climbing image nudged elastic band reaction-pathway sampling scheme. Even though adsorption and decomposition reaction can occur on the surfaces, for all configurations studied, the results show that the decomposition of EC is more likely on the charged surface despite having higher adsorption energy on the fully discharged surface. In general, this work aims to give an insight into the initial stages of surface catalyzed electrolyte decomposition reactions on spinel cathode structure.

Abstract ii 摘要 iii 致謝 iv Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature Survey 4 2.1 Lithium Ion Battery: An Overview 4 2.2 Working Principle of Li Ion Battery 9 2.3 Main Components of Li Ion Battery 11 2.3.1 Electrolytes 11 2.3.2 Anode Material 14 2.3.3 Cathode Material 16 2.3.4 Cathode-Electrolyte Interface 21 Chapter 3 Computational Details 25 Chapter 4 Results and Discussion 27 4.1 LiMn2O4 bulk and the (110) Clean surface 27 4.1.1 LiMn2O4 bulk 27 4.1.2 LiMn2O4 (100) Surfaces 29 4.1.3 Li0.6Mn2O4 (100) Surfaces 31 4.2 Adsorption of Ethylene Carbonate on the cathode surfaces 33 4.3 Surface Catalyzed Decomposition Mechanisms of EC 40 4.3.1 EC Decomposition on Charged Li0.6Mn2O4 (100) 40 4.3.2 EC Decomposition on Discharged LiMn2O4 (100) 47 Chapter 5 Conclusion 55 Reference 57

(1) Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. Journal of Power Sources 1999, 81-82, 902.
(2) Scrosati, B. Electrochimica Acta 2000, 45, 2461.
(3) Megahed, S.; Ebner, W. Journal of Power Sources 1995, 54, 155.
(4) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
(5) Fergus, J. W. Journal of Power Sources 2010, 195, 939.
(6) Lee, H.-W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Nano Letters 2010, 10, 3852.
(7) Shaju, K. M.; Bruce, P. G. Chemistry of Materials 2008, 20, 5557.
(8) Kim, J.-S.; Kim, K.; Cho, W.; Shin, W. H.; Kanno, R.; Choi, J. W. Nano Letters 2012, 12, 6358.
(9) Gummow, R. J.; de Kock, A.; Thackeray, M. M. Solid State Ionics 1994, 69, 59.
(10) Hunter, J. C. Journal of Solid State Chemistry 1981, 39, 142.
(11) Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321.
(12) Matsuo, Y.; Kostecki, R.; McLarnon, F. Journal of the Electrochemical Society 2001, 148, A687.
(13) Norberg, N. S.; Kostecki, R. J. Electrochem. Soc. 2012, 159, A1091.
(14) Chen, C.-L.; Chiu, K.-F.; Leu, H. J.; Chen, C. C. J. Electrochem. Soc. 2013, 160, A3126.
(15) Fauteux, D.; Koksbang, R. J. Appl. Electrochem. 1993, 23, 1.
(16) van Schalkwijk, W.; Scrosati, B. In Advances in Lithium-Ion Batteries; van Schalkwijk, W., Scrosati, B., Eds.; Springer US: 2002, p 1.
(17) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. Journal of Materials Chemistry 2011, 21, 9938.
(18) Diaz-Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R. Renew Sust Energ Rev 2012, 16, 2154.
(19) Yang, H.; Amiruddin, S.; Bang, H. J.; Sun, Y. K.; Prakash, J. J Ind Eng Chem 2006, 12, 12.
(20) Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. Journal of Power Sources 2013, 226, 272.
(21) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
(22) Aurbacha, D.; Markovskya, B.; Weissmana, I.; Levia, E.; Ein-Eli, Y. Electrochimica Acta 1999, 45, 67.
(23) Yoshio, M.; Noguchi, H. In Lithium-Ion Batteries; Yoshio, M., Brodd, R., Kozawa, A., Eds.; Springer New York: 2009, p 9.
(24) Marichal, C.; Hirschinger, J.; Granger, P.; Menetrier, M.; Rougier, A.; Delmas, C. Inorganic Chemistry 1995, 34, 1773.
(25) Menetrier, M.; Saadoune, I.; Levasseur, S.; Delmas, C. Journal of Materials Chemistry 1999, 9, 1135.
(26) Imanishi, N.; Fujiyoshi, M.; Takeda, Y.; Yamamoto, O.; Tabuchi, M. Solid State Ionics 1999, 118, 121.
(27) Liu, J.; Liu, N.; Liu, D.; Bai, Y.; Shi, L.; Wang, Z.; Chen, L.; Hennige, V.; Schuch, A. Journal of the Electrochemical Society 2007, 154, A55.
(28) Cho, J.; Kim, C. S.; Yoo, S. I. Electrochemical and Solid-State Letters 2000, 3, 362.
(29) Cho, J.; Kim, G. Electrochemical and Solid-State Letters 1999, 2, 253.
(30) Chen, Z.; Dahn, J. R. Electrochimica Acta 2004, 49, 1079.
(31) Doeff, M. In Batteries for Sustainability; Brodd, R. J., Ed.; Springer New York: 2013, p 5.
(32) Fuel and Energy Abstracts 2001, 42, 240.
(33) Meng, Y. S.; Arroyo-de Dompablo, M. E. Energy & Environmental Science 2009, 2, 589.
(34) Besenhard, J. O.; Winter, M. ChemPhysChem 2002, 3, 155.
(35) Dey, A. N.; Sullivan, B. P. Journal of the Electrochemical Society 1970, 117, 222.
(36) Aurbach, D.; Y. Ein-Eli, B. M.; Zaban, A.; Luski, S.; Carmeli, Y.; H. Yamin Journal of the Electrochemical Society 1995, 142, 2882.
(37) Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Journal of the Electrochemical Society 1993, 140, 2490.
(38) Dahn, J. Physical Review B 1991, 44, 9170.
(39) Guo, D.; Chang, Z.; Li, B.; Tang, H.; Yuan, X.-Z.; Wang, H. J Solid State Electrochem 2013, 17, 2849.
(40) Dahn, J. R.; Sacken, U. v.; Juzkow, M. W.; Al-Janaby, H. Journal of the Electrochemical Society 1991, 138, 2207.
(41) Koetschau, I.; Richard, M. N.; Dahn, J. R.; Soupart, J. B.; Rousche, J. C. Journal of the Electrochemical Society 1995, 142, 2906.
(42) Chu, A. C.; Josefowicz, J. Y.; Farrington, G. C. Journal of the Electrochemical Society, 1997, 144, 4161.
(43) Ein-Eli, Y.; Thomas, S. R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A. Journal of the Electrochemical Society 1996, 143, L273.
(44) Chua, D.; Choblet, A.; Manivanna, V.; Lin, H. W.; Wolfenstine, J. In Applications and Advances, 2001. The Sixteenth Annual Battery Conference on 2001, p 275.
(45) Ue, M.; Murakami, A.; Nakamura, S. Journal of The Electrochemical Society 2002, 149, A1572.
(46) Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, M. J. Journal of the Electrochemical Society 1996, 143, 798.
(47) Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. Electrochimica Acta 2002, 47, 1423.
(48) Nanjundiah, C.; Goldman, J. L.; Dominey, L. A.; Koch, V. R. Journal of the Electrochemical Society 1988, 135, 2914.
(49) Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; T.B. Curtis The Journal of Physical Chemistry C 2007, 111, 7411.
(50) Xu, K. Chemical Reviews 2004, 104, 4303.
(51) Xu, K.; Lee, U.; Zhang, S. S.; Jow, T. R. Journal of The Electrochemical Society 2004, 151, A2106.
(52) Zhang, S. S. Journal of Power Sources 2006, 162, 1379.
(53) In Industrial Chemistry Library; Pistoia, G., Ed.; Elsevier: Amsterdam, 1994; Vol. 5.
(54) Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z.; Chen, L. Adv. Mater. 2011, 23, 1385.
(55) Guo, J.; Zuo, W.; Cai, Y.; Chen, S.; Zhang, S.; Liu, J. Journal of Materials Chemistry A 2015, 3, 4938.
(56) Bresser, D.; Paillard, E.; Passerini, S. In Advances in Batteries for Medium and Large-Scale Energy Storage; Lim, C. M. S.-K. M., Ed.; Woodhead Publishing: 2015, p 125.
(57) Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Energy & Environmental Science 2009, 2, 638.
(58) Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E. C.; O'Keefe, M. A. Nature Materials 2003, 2, 464.
(59) Li, T.; Qiu, W.; Zhao, R.; Xia, H.; Zhao, H.; J. Liu Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2008, 15, 74.
(60) Brandt, K. Solid State Ion 1994, 69, 173.
(61) Koksbang, R.; Barker, J.; Shi, H.; Saïdi, M. Y. Solid State lonics 1996, 84, 1.
(62) Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Solid State Ionics 1996, 83, 167.
(63) Ohzuku, T.; Ueda, A.; Kouguchi, M. Journal of The Electrochemical Society 1995, 142, 4033.
(64) Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J.-i. Solid State Ionics 1998, 109, 295.
(65) Stoyanova, R. Solid State Ionics 2003, 161, 197.
(66) Albrecht, S.; Kümpers, J.; Kruft, M.; Malcus, S.; Vogler, C.; Wahl, M.; Wohlfahrt-Mehrens, M. Journal of Power Sources 2003, 119-121, 178.
(67) Guilmard, M.; Croguennec, L.; Denux, D.; C. Delmas Chemistry of Materials 2003, 15, 4476.
(68) Kim, Y.; Kim, D.; Kang, S. Chemistry of Materials 2011, 23, 5388.
(69) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Journal of The Electrochemical Society 1997, 144, 1188.
(70) MacNeila, D. D.; Lub, Z.; Chenb, Z.; Dahna, J. R. Journal of Power Sources 2002, 108, 8.
(71) Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283.
(72) Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Nature Materials 2002, 1, 123.
(73) Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochemistry Communications 2001, 3, 505.
(74) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; M. Armand Journal of Power Sources 2001, 97, 503.
(75) Huang, H.; Yin, S. C.; Nazar, L. F. Electrochemical and Solid-State Letters 2001, 4, A170.
(76) Thackeray, M. M.; Johnson, P. J.; de Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1984, 19, 179.
(77) Aurbach, D.; Levi, M. D.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R. J. Power Sources 1999, 81–82, 472.
(78) M.M.Thackeray; W.I.F.David; P.G.Bruce; J.B.Goodenough Materials Research Bulletin 1983, 18, 431.
(79) Guyomard, D.; Tarascon, J. M. Journal of The Electrochemical Society 1992, 139, 937.
(80) Tarascon, J. M.; Guyomard, D. Electrochimica Acta 1993, 38, 1221.
(81) Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Lee, J.-P.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Park, J.-W. Journal of Power Sources 2004, 130, 227.
(82) Chen, J.-S.; Wang, L.-F.; Fang, B.-J.; Lee, S.-Y.; Guo, R.-Z. Journal of Power Sources 2006, 157, 515.
(83) Shu, D. Solid State Ionics 2003, 160, 227.
(84) Xia, Y.; Sakai, T.; Fujieda, T.; Yang, X. Q.; Sun, X.; Ma, Z. F.; McBreen, J.; Yoshio, M. Journal of The Electrochemical Society 2001, 148, A723.
(85) Xia, Y.; Zhou, Y.; Yoshio, M. Journal of The Electrochemical Society 1997, 144, 2593.
(86) EinEli, Y.; Howard, W. F.; Lu, S. H.; Mukerjee, S.; McBreen, J.; Vaughey, J. T.; M.M.Thackeray Journal of The Electrochemical Society 1998, 145, 1238.
(87) Dokko, K.; Horikoshi, S.; Itoh, T.; Nishizawa, M.; Mohamedi, M.; Uchida, I. Journal of Power Sources 2000, 90, 109.
(88) Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochemistry Communications 2003, 5, 940.
(89) Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Ju, J.-B.; Park, J.-W. Journal of Power Sources 2004, 126, 150.
(90) Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K. Nat Mater 2009, 8, 320.
(91) Sun, Y.-K.; Lee, B.-R.; Noh, H.-J.; Wu, H.; Myung, S.-T.; Amine, K. Journal of Materials Chemistry 2011, 21, 10108.
(92) Cho, Y.; Lee, S.; Lee, Y.; Hong, T.; Cho, J. Advanced Energy Materials 2011, 1, 821.
(93) Novak, P.; Christensen, P. A.; Iwasita, T.; Vielstich, W. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 263, 37.
(94) Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Journal of Power Sources 2012, 208, 210.
(95) Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Journal of Power Sources 2005, 147, 269.
(96) Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. Journal of Power Sources 2006, 155, 401.
(97) Nishi, Y. Journal of Power Sources 2001, 100, 101.
(98) Yamaki, J.-i. In Advances in Lithium-Ion Batteries; van Schalkwijk, W., Scrosati, B., Eds.; Springer US: 2002, p 155.
(99) Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. Journal of The Electrochemical Society 1998, 145, 3024.
(100) Vetter, J.; Holzapfel, M.; Wuersig, A.; Scheifele, W.; Ufheil, J.; Novák, P. Journal of Power Sources 2006, 159, 277.
(101) Sharabi, R.; Markevich, E.; Borgel, V.; Salitra, G.; Aurbach, D.; Semrau, G.; Schmidt, M. A. Electrochem. Solid-State Lett. 2010, 13, A32.
(102) Song, S.-W.; Zhuang, G. V.; Ross, P. N. J. Electrochem. Soc. 2004, 151, A1162.
(103) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Ohashi, M.; Takehara, Z.-i. Journal of Electroanalytical Chemistry 1996, 419, 77.
(104) Aurbach, D.; Gamolsky, K.; Markovsky, B.; Salitra, G.; Gofer, Y.; Heider, U.; Oesten, R.; Schmidt, M. Journal of The Electrochemical Society 2000, 147, 1322.
(105) Kresse, G.; Furthmler, J. Computational Materials Science 1996, 6, 15.
(106) Kresse, G.; Furthmler, J. Physical Review B 1996, 54, 11169.
(107) Perdew, J. P.; Yue, W. Physical Review B 1986, 33, 8800.
(108) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
(109) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1997, 78, 1396.
(110) Blöchl, P. E. Physical Review B 1994, 50, 17953.
(111) Kresse, G.; Joubert, D. Physical Review B 1999, 59, 1758.
(112) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Physical Review B 1998, 57, 1505.
(113) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. Physical Review B 2004, 70, 235121.
(114) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. The Journal of chemical physics 2000, 113, 9901.
(115) Mukai, K.; Sugiyama, J.; Kamazawa, K.; Ikedo, Y.; Andreica, D.; Amato, A. Journal of Solid State Chemistry 2011, 184, 1096.
(116) Grechnev, G. E.; Ahuja, R.; Johansson, B.; Eriksson, O. Physical Review B 2002, 65, 174408.
(117) Leung, K. The Journal of Physical Chemistry C 2012, 116, 9852.
(118) Benedek, R.; Thackeray, M. M. Physical Review B 2011, 83, 195439.

QR CODE