簡易檢索 / 詳目顯示

研究生: 陳奕升
Yi-Sheng Chen
論文名稱: 新型態鋰離子電池添加劑(馬來醯亞胺/雙馬來醯亞胺)研究探討
The Investigation of New Type of Additive(N,N’-bismaleimide-4,4’-diphenylmethane and maleimide) in Lithium Ion Battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 王復民
Fu-Ming Wang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 鋰離子電池添加劑馬來醯亞胺雙馬來醯亞胺
外文關鍵詞: Lithium ion battery, Additive, Maleimide, N,N- bismaleimide-4,4-diphenylmethane
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用示差掃描熱量分析儀(DSC),以非恆溫反應動力學探討合成馬來醯亞胺線性添加劑( Living@ MI )和馬來醯亞胺/雙馬來醯亞胺支狀添加劑( Living@ BMI/MI ),合成反應溫度、反應放熱量以及藉由自由模型法求得反應活化能,並利用核磁共振(NMR)鑑定Living@ BMI/MI、Living@ MI添加劑的化學結構,而熱重分析(TGA)和動態光散射(DLS),分別為測試Living@ BMI/MI以及Living@ MI添加劑耐熱性質以及Living@ BMI/MI添加劑具有Microgel顆粒性質。
    另一方面的研究,將Living@ BMI/MI、Living@ MI添加劑應用於鋰離子電池,作為鋰離子電池添加劑,探討對於LiNi0.5Co0.2Mn0.3O2正極材料的影響,利用正極半電池,進行充放電(C/DC)、交流阻抗圖譜(EIS)以及循環伏安(CV)以上測試,分析這兩種添加劑添加至正極材料後,對於電池性能、電池內部阻抗以及電化學性質的影響,並通過掃描式電子顯微鏡(SEM)、能量分散光譜(EDS),了解經充放電後的電極極片表面型態及元素組成,最後再藉由示差掃描熱量分析儀(DSC)測試電極材料的熱穩定性。本研究的實驗結果,在正極材料中添加1wt%的Living@ BMI/MI可以最有效改善正極半電池於常溫電池循環壽命衰退以及電化學反應性質,而高溫環境的充放電測則是添加1 wt%的Living@ MI表現最為優異,在電極材料的熱穩定性為0.5%的Living@ BMI/MI耐熱性質較佳。


    This study used a differential scanning calorimeter (DSC) to investigate the maleimide additive (Living@ MI) and bismaleimide / maleimide additive (Living@ BMI/MI) with non-isothermal kinetics that can be understanded the reaction temperature, exotherm. the study also used the free model method to know the activation energy, and identification of chemical structure of Living@ BMI/MI, Living@ MI additive by nuclear magnetic resonance (NMR), and thermogravimetry Analysis (TGA) and dynamic light scattering (DLS), respectively, for testing Living@BMI/MI and Living@MI additive heat-resistant properties and Living@BMI/MI additive Microgel particle properties.
    On the other hand, Living@BMI/MI and Living@MI additives were applied to lithium-ion batteries, We want to know the effect of LiNi0.5Co0.2Mn0.3O2 cathode material. The cathode be made to the half-cell, It was used for charging. Discharge test (C/DC), Electrochemical Impedance Spectroscopy (EIS), and cyclic voltammetry (CV) tests were performed to analyze the effects of the two additives added to the positive electrode material. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to understand the surface morphology and elemental composition of the electrode after charge and discharge. Finally, the thermal stability of the electrode material was tested by differential scanning calorimetry (DSC). . The experimental results of this study, adding 1wt% of Living@BMI/MI to the positive electrode material can most effectively improve the cycle life degradation and electrochemical reaction properties of the positive half cell at room temperature, while the charge and discharge test in the high temperature environment is to add 1 wt. % Living@ MI is the most excellent, and the heat resistance of Living@BMI/MI with 0.5% thermal stability of the electrode material is better.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章、研究背景 1 1.1鋰離子電池 1 1.1.1正極材料 2 1.1.2電解質 2 1.1.3隔離膜 2 1.1.4負極材料 3 第二章、研究動機 4 第三章、文獻回顧 8 3.1隔離膜斷開技術 8 3.1.1微孔高分子隔離膜 9 3.1.2不織布纖維隔離膜 11 3.1.3無機複合隔離膜 12 3.2電解質安全性改善 13 3.2.1穩定的鋰鹽 14 3.2.2路易斯鹼穩定劑 14 3.2.3阻燃添加劑 16 3.3塗層技術保護正極材料 17 3.4表面活物修飾 23 第四章、研究介紹 26 4.1 Living@ BMI / MI反應機制 27 4.2 Living@ MI反應機制 28 第五章、實驗藥品和設備 29 第六章、實驗樣品製備 30 6.1 NMR樣品製備 30 6.1.1 [ BMI / MI [ 1 / 1 ( mol / mol )] / NMP ] 30 6.1.2 [ MI / NMP ] 30 6.1.3 [ BMI / NMP ] 30 6.2 DLS樣品製備 30 6.2.1 [ BMI / MI [ 1 / 1 ( mol / mol )] / NMP ] 30 6.2.2 [ MI / NMP ] 31 6.2.3 [ BMI / NMP ] 31 6.3 DSC樣品製備 31 6.3.1 [ BMI / MI [ 1 / 1 ( mol / mol )] / NMP ] 31 6.3.2 [ MI / NMP ] 31 6.3.3 [ BMI / NMP ] 32 6.3.4 [ BMI / MI [ 1 / 1 ( mol / mol )] / HQ / NMP ] 32 6.3.5 [ MI / HQ / NMP ] 32 6.3.6 [ BMI / HQ / NMP ] 32 6.4 GPC樣品製備 32 6.4.1 [ BMI / MI [ 1 / 1 ( mol / mol )] / NMP ] 32 6.4.2[ MI / NMP ] 33 6.4.3 [ BMI / NMP ] 33 6.5 TGA樣品製備 33 6.5.1 [ BMI / MI [ 1 / 1 ( mol / mol )] / NMP ] 33 6.5.2 [ MI / NMP ] 33 6.5.3 [ BMI ] 34 6.5.4 [ MI ] 34 6.6 Living@添加劑製備 34 6.6.1 [ BMI / MI [ 1 / 1 ( mol / mol )] ] 34 6.6.2 [ MI ] 34 6.6.3 [ BMI ] 34 6.7 電極漿料製備 35 6.7.1 [ LiNi0.5Co0.2Mn0.3O2 ] 35 6.7.2 [ Living@ BMI / MI - 0.5% / LiNi0.5Co0.2Mn0.3O2 ] 35 6.7.3 [ Living@ BMI / MI - 1% / LiNi0.5Co0.2Mn0.3O2 ] 35 6.7.4 [ Living@ BMI - 0.5% / LiNi0.5Co0.2Mn0.3O2 ] 35 6.7.5 [ Living@ BMI - 1% / LiNi0.5Co0.2Mn0.3O2 ] 35 6.7.6 [ Living@ MI - 0.5% / LiNi0.5Co0.2Mn0.3O2 ] 36 6.7.7 [ Living@ MI - 1% / LiNi0.5Co0.2Mn0.3O2 ] 36 6.8 電極極片製備 36 6.9 鈕扣型電池(coin cell)組裝 37 第七章、結果與討論 38 7.1 Living@添加劑合成熱化學分析 38 7.1.1 馬來醯亞胺與雙馬來醯亞胺非恆溫動力學 38 7.1.2 馬來醯亞胺非恆溫動力學 40 7.1.3 雙馬來醯亞胺非恆溫動力學 41 7.2 非恆溫動力學以自由模型法分析 42 7.2.1 非恆溫動力學雙馬來醯亞胺活化能分析 43 7.2.2 非恆溫動力學馬來醯亞胺活化能分析 44 7.2.3 非恆溫動力學馬來醯亞胺與雙馬來醯亞胺活化能分析 45 7.3 Living@添加劑反應機制探討 47 7.3.1 馬來醯亞胺與雙馬來醯亞胺反應機制分析 47 7.3.2 馬來醯亞胺反應機制分析 47 7.4 Living@添加劑NMR結構分析 48 7.4.1 Living@ BMI / MI 氫譜結構分析 49 7.4.2 Living@ MI 氫譜結構分析 50 7.4.3 PMI / MI 氫譜結構分析 51 7.5 Living@ BMI / MI添加劑 DLS粒徑分析 52 7.6 Living@添加劑耐熱性質分析 53 7.8 循環伏安(CV)分析 55 7.8.1 Bare NCM523 55 7.8.2 Living@ MI 56 7.8.3 Living@ BMI/MI 57 7.8.4 Living@ BMI/MI不同添加量對於CV分析的影響 59 7.9第一圈充放電曲線分析 60 7.10常溫充放電循環壽命圖 62 7.10.1 Living@ BMI/MI、Living@ MI與Living@ BMI分析 62 7.10.2 Living@ BMI/MI、Living@ MI與STOBA分析 63 7.11常溫Living@添加劑(1-50圈)充放電曲線 64 7.12常溫Living@添加劑(1-50圈)交流阻抗圖譜分析 66 7.12.1 NCM523 66 7.12.2 Living@ BMI/MI - 0.5% 67 7.12.3 Living@ BMI/MI - 1% 69 7.12.4 Living@ MI - 0.5% 70 7.12.5 Living@ MI - 1% 71 7.13 高溫(55oC)充放電循環壽命圖 72 7.13.1 Living@ BMI/MI、Living@ MI與STOBA分析 72 7.14 高溫(55oC)Living@添加劑充放電曲線分析 73 7.15 高溫(55oC)Living@添加劑交流阻抗圖譜分析 75 7.16 Living@ BMI/MI添加劑於不同充放電速率分析 77 7.17 [ Living@ 添加劑 / NCM523 ] SEM分析 78 7.17.1 NCM523 78 7.17.2 Living@ BMI/MI - 0.5% 79 7.17.3 Living@ BMI/MI - 1% 80 7.18 [ Living@添加劑 / NCM523 ] EDS分析 81 7.19正極極片DSC分析 82 第八章、結論 83 參考文獻 84 圖片參考 88

    [1] Whittingham, M. Stanley. "Electrical energy storage and intercalation chemistry." Science 192.4244 (1976): 1126-1127.
    [2] Kirchhoff, G., and R. Bunsen. "LXIV. Chemical analysis by spectrum-observations." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 22.150 (1861): 498-510.
    [3] Mizushima, K., et al. "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density." Materials Research Bulletin 15.6 (1980): 783-789.
    [4] Thackeray, M. M., et al. "Lithium insertion into manganese spinels." Materials Research Bulletin 18.4 (1983): 461-472.
    [5] Padhi, Akshaya K., Kirakodu S. Nanjundaswamy, and John B. Goodenough. "Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries." Journal of the electrochemical society 144.4 (1997): 1188-1194.
    [6] Li, Qi, et al. "Progress in electrolytes for rechargeable Li-based batteries and beyond." Green Energy & Environment 1.1 (2016): 18-42.
    [7] Megahed, S., and W. Ebner. "Lithium-ion battery for electronic applications." Journal of Power Sources 54.1 (1995): 155-162.
    [8] Thackeray, Michael M., Christopher Wolverton, and Eric D. Isaacs. "Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries." Energy & Environmental Science 5.7 (2012): 7854-7863.
    [9] Zhang, Wei-Jun. "A review of the electrochemical performance of alloy anodes for lithium-ion batteries." Journal of Power Sources 196.1 (2011): 13-24.
    [10] Yoshio, Masaki, et al. "Carbon-coated Si as a lithium-ion battery anode material." Journal of The Electrochemical Society 149.12 (2002): A1598-A1603.
    [11] Yoshio, Masaki, et al. "Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material." Journal of The Electrochemical Society 147.4 (2000): 1245-1250.
    [12] Zhang, Y., et al. "Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries." Electrochimica Acta 51.23 (2006): 4994-5000.
    [13] Inaba, Minoru, et al. "Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate." Journal of Power Sources 68.2 (1997): 221-226.
    [14] Wang, Congxiao, et al. "Electrochemical behaviour of a graphite electrode in propylene carbonate and 1, 3-benzodioxol-2-one based electrolyte system." Journal of power sources 74.1 (1998): 142-145.
    [15] Zhu, Yanwu, et al. "Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets." ACS nano 4.2 (2010): 1227-1233.
    [16] Erk, Christoph, et al. "Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders." ACS applied materials & interfaces 5.15 (2013): 7299-7307.
    [17] Li, Hong, et al. "The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature." Solid State Ionics 135.1-4 (2000): 181-191.
    [18] Szczech, Jeannine R., and Song Jin. "Nanostructured silicon for high capacity lithium battery anodes." Energy & Environmental Science 4.1 (2011): 56-72.
    [19] Park, Mi-Hee, et al. "Silicon nanotube battery anodes." Nano letters 9.11 (2009): 3844-3847.
    [20] " Lithium-ion battery " Wikipedia, The Free Encyclopedia. 19 June 2019, 06:32 UTC. Wikimedia Foundation, Inc. 3 December. 2013. <https://zh.wikipedia.org/wiki/%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0>.
    [21] Goodenough, John B. "Energy storage materials: a perspective." Energy Storage Materials 1 (2015): 158-161..
    [22] Shan, Xu-Yi, et al. "The smart era of electrochemical energy storage devices." Energy Storage Materials 3 (2016): 66-68.
    [23] Noori, Mehdi, Stephanie Gardner, and Omer Tatari. "Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model." Energy 89 (2015): 610-625.
    [24] Dunn, J. B., et al. "The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction." Energy & Environmental Science 8.1 (2015): 158-168.
    [25] Diouf, Boucar, and Ramchandra Pode. "Potential of lithium-ion batteries in renewable energy." Renewable Energy 76 (2015): 375-380.
    [26] Rauh, Nadine, Thomas Franke, and Josef F. Krems. "Understanding the impact of electric vehicle driving experience on range anxiety." Human factors 57.1 (2015): 177-187.
    [27] Liang, Ji, Feng Li, and Hui-Ming Cheng. "High-capacity lithium ion batteries: bridging future and current." (2016): A1-A2.
    [28] Wang, Qingsong, et al. "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect." Nano Energy(2018).
    [29] Noh, Hyung-Joo, et al. "Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries." Journal of power sources 233 (2013): 121-130.
    [30] Wierzbicki, T., E. Sahraei, and J. Zhu. "The Mechanics of Lithium-ion Batteries." (2016).
    [31] Wierzbicki, Tomasz, et al. Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse. No. NREL/PR-5400-64148. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2015.
    [32] Zhu, Juner, Tomasz Wierzbicki, and Wei Li. "A review of safety-focused mechanical modeling of commercial lithium-ion batteries." Journal of Power Sources 378 (2018): 153-168.
    [33] Roth, E. Peter, and Christopher J. Orendorff. "How electrolytes influence battery safety." The Electrochemical Society Interface21.2 (2012): 45-49.
    [34] Zhang, Sheng Shui. "A review on the separators of liquid electrolyte Li-ion batteries." Journal of power sources 164.1 (2007): 351-364.
    [35] Venugopal, Ganesh, et al. "Characterization of microporous separators for lithium-ion batteries." Journal of power sources77.1 (1999): 34-41.
    [36] Lee, Yong Min, et al. "Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries." Journal of power sources 139.1-2 (2005): 235-241.
    [37] Zhang, Lupeng, et al. "Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries." Journal of Membrane Science 577 (2019): 137-144.
    [38] Li, Qi, et al. "Progress in electrolytes for rechargeable Li-based batteries and beyond." Green Energy & Environment 1.1 (2016): 18-42.
    [39] Lu, Zhenrong, Li Yang, and Yaju Guo. "Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis." Journal of power sources 156.2 (2006): 555-559.
    [40] Huang, Jia-yuan, et al. "Study on γ-butyrolactone for LiBOB-based electrolytes." Journal of Power Sources 189.1 (2009): 458-461.
    [41] Goldman, J. L., et al. "Structure‐Reactivity Relationships of Methylated Tetrahydrofurans with Lithium." Journal of The Electrochemical Society 127.7 (1980): 1461-1467.
    [42] Morita, Masayuki, et al. "Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries." Electrochimica Acta 47.17 (2002): 2787-2793.
    [43] Dahbi, Mouad, et al. "Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage." Journal of Power Sources 196.22 (2011): 9743-9750.
    [44] Kanamura, Kiyoshi, et al. "Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3 SO 3, Li (CF 3 SO 2) 2 N, or Li (C 4 F 9 SO 2)(CF 3 SO 2) N." Journal of The Electrochemical Society149.2 (2002): A185-A194.
    [45] Li, Faqiang, et al. "A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability." Journal of Power Sources 295 (2015): 47-54.
    [46] Zhang, Longfei, et al. "Synergistic effect between lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries." Electrochimica Acta 127 (2014): 39-44.
    [47] Chen, Xilin, et al. "Mixed salts of LiTFSI and LiBOB for stable LiFePO 4-based batteries at elevated temperatures." Journal of Materials Chemistry A 2.7 (2014): 2346-2352.
    [48] Li, Wentao, and Brett L. Lucht. "Inhibition of the detrimental effects of water impurities in lithium-ion batteries." Electrochemical and solid-state letters 10.4 (2007): A115-A117.
    [49] Santee, Stuart, et al. "Effect of combinations of additives on the performance of lithium ion batteries." Journal of Power Sources194.2 (2009): 1053-1060.
    [50] Xu, Mengqing, et al. "Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries." The Journal of Physical Chemistry C115.13 (2011): 6085-6094.
    [51] Xiao, Ang, Wentao Li, and Brett L. Lucht. "Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF6-based electrolyte." Journal of power sources 162.2 (2006): 1282-1288.
    [52] Li, W., et al. "Surface analysis of electrodes from cells containing electrolytes with stabilizing additives exposed to high temperature." Journal of The Electrochemical Society 155.9 (2008): A648-A657.
    [53] Li, Wentao, and Brett L. Lucht. "Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries." Journal of power sources 168.1 (2007): 258-264.
    [54] Bae, Seo-Youn, Won-Kyung Shin, and Dong-Won Kim. "Protective organic additives for high voltage LiNi0. 5Mn1. 5O4 cathode materials." Electrochimica Acta 125 (2014): 497-502.
    [55] Yao, X. L., et al. "Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries." Journal of power sources 144.1 (2005): 170-175.
    [56] Wang, Xianming, Eiki Yasukawa, and Shigeaki Kasuya. "Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties." Journal of The Electrochemical Society 148.10 (2001): A1058-A1065.
    [57] Wang, Xianming, Eiki Yasukawa, and Shigeaki Kasuya. "Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The Use of an amorphous carbon anode." Journal of The Electrochemical Society 148.10 (2001): A1066-A1071.
    [58] Hyung, Yoo E., Donald R. Vissers, and Khalil Amine. "Flame-retardant additives for lithium-ion batteries." Journal of power sources 119 (2003): 383-387.
    [59] Xiang, H. F., et al. "Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes." Journal of Power Sources 173.1 (2007): 562-564.
    [60] Zeng, Ziqi, et al. "Safer lithium ion batteries based on nonflammable electrolyte." Journal of Power Sources 279 (2015): 6-12.
    [61] Feng, Jinkui, et al. "Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries." Electrochimica Acta 114 (2013): 688-692.
    [62] Högström, Katarzyna Ciosek, et al. "Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications." Journal of Power Sources 256 (2014): 430-439.
    [63] Wang, Qingsong, et al. "4-Isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte." Electrochemical and solid-state letters 8.9 (2005): A467-A470.
    [64] Wang, Qingsong, Jinhua Sun, and Chunhua Chen. "Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries." Journal of power sources 162.2 (2006): 1363-1366.
    [65] Baginska, Marta, Nancy R. Sottos, and Scott R. White. "Core–Shell Microcapsules Containing Flame Retardant Tris (2-chloroethyl phosphate) for Lithium-Ion Battery Applications." ACS omega 3.2 (2018): 1609-1613.
    [66] Jin, Zuxi, et al. "A novel phosphate-based flame retardant and film-forming electrolyte additive for lithium ion batteries." ECS Electrochemistry Letters 2.7 (2013): A66-A68.
    [67] Tsubouchi, Shigetaka, et al. "Electrochemical Stabilization of Self-Extinguishing Electrolyte Solutions with Trimethyl Phosphate by Adding Potassium Salts." The Journal of Physical Chemistry C 122.24 (2018): 12657-12664.
    [68] Marcinek, M., et al. "Electrolytes for Li-ion transport–review." Solid State Ionics 276 (2015): 107-126.
    [69] Liu, Kai, et al. "Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries." Science advances 3.1 (2017): e1601978.
    [70] Liu, Shuxin, et al. "Synthesis, characterization and electrochemical performances of MoO2 and carbon co-coated LiFePO4 cathode materials." Ceramics International 40.2 (2014): 3325-3331.
    [71] Liu, Shuxin, and Haibin Wang. "WO2 modified LiFePO4/C cathode materials with improved electrochemical performance synthesized by in-situ synthesis method." Materials Letters 122 (2014): 151-154.
    [72] Hao, Qin, et al. "Improving the cycling stability of LiCoO2 at 4.5 V through surface modification by Fe2O3 coating." Electrochimica Acta 113 (2013): 439-445..
    [73] Zhao, Jianqing, and Ying Wang. "Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature." Nano Energy 2.5 (2013): 882-889.
    [74] Konishi, Hiroaki, et al. "Effect of surface Li3PO4 coating on LiNi0. 5Mn1. 5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition." Journal of Power Sources 269 (2014): 293-298.
    [75] Lee, Dong-Ju, et al. "Improvement of electrochemical properties of Li1. 1Al0. 05Mn1. 85O4 achieved by an AlF3 coating." Journal of power sources 196.3 (2011): 1353-1357.
    [76] Shi, Yang, et al. "Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0. 5Co0. 2Mn0. 3O2 cathode material." Electrochimica Acta 203 (2016): 154-161.
    [77] Lin, Chun-Chieh, et al. "Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode." Electrochimica Acta 101 (2013): 11-17.
    [78] Maleki, Hossein, et al. "Thermal Stability Studies of Li‐Ion Cells and Components." Journal of The electrochemical society 146.9 (1999): 3224-3229.
    [79] Wang, Fu-Ming, et al. "Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery." Journal of membrane science 368.1-2 (2011): 165-170.
    [80] Wang, Fu-Ming, et al. "Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries." Electrochimica Acta 54.12 (2009): 3344-3351.
    [81] Vyazovkin, Sergey, et al. "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data." Thermochimica acta 520.1-2 (2011): 1-19.
    [82] Pham, Quoc-Thai, et al. "Kinetics of polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane, barbituric acid and aminopropyl phenylsiloxane oligomer." Journal of the Taiwan Institute of Chemical Engineers 67 (2016): 88-97.
    [83] Wang, Wei, et al. "Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes." Small 10.16 (2014): 3389-3396.
    [84] Wang, Wei, et al. "Monodisperse porous silicon spheres as anode materials for lithium ion batteries." Scientific reports 5 (2015): 8781.
    [85] Favors, Zachary, et al. "Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries." Scientific reports4 (2014): 5623.
    [86] Gaberscek, Miran, et al. "The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc." Electrochemical and Solid-State Letters 11.10 (2008): A170-A174.
    [87] Dees, Dennis, et al. "Alternating current impedance electrochemical modeling of lithium-ion positive electrodes." Journal of The Electrochemical Society 152.7 (2005): A1409-A1417.
    [88] Brug, G. J., et al. "The analysis of electrode impedances complicated by the presence of a constant phase element." Journal of electroanalytical chemistry and interfacial electrochemistry 176.1-2 (1984): 275-295.
    [89] Favors, Zachary, et al. "Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO 2 nanofibers." Scientific reports 5 (2015): 8246.
    [90] Liu, Chueh, et al. "Template free and binderless NiO nanowire foam for Li-ion battery anodes with long cycle life and ultrahigh rate capability." Scientific reports 6 (2016): 29183.
    [91] Lago, Nicolo, et al. "A physical-based equivalent circuit model for an organic/electrolyte interface." Organic Electronics 35 (2016): 176-185.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE