簡易檢索 / 詳目顯示

研究生: 楊承穎
Cheng-Ying Yang
論文名稱: 利用智慧化電子凸輪實現伺服沖床之運動軌跡最佳化研究
Study on Trajectory Optimization of a Servo Press Using Intelligent Electronic Cam
指導教授: 郭永麟
Yun-Lin Kuo
口試委員: 陳亮光
Liang-Kuang Chen
郭鴻飛
Hung-Fei Kuo
楊振雄
Chen-Hsiung Yang
郭永麟
Yun-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 智慧化電子凸輪軌跡曲線最佳化伺服沖床
外文關鍵詞: Intelligent electronic cam, Trajectory optimization, Servo press
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著電子技術的發展,再加上機械式凸輪易磨損導致精度下降、難以彈性改變凸輪曲線的缺點,造成傳統機械式凸輪漸漸被電子式凸輪取代,在伺服系統更是可以利用伺服控制技術驅動馬達的轉動達到凸輪機構中的同步與追蹤的運動,並且在伺服系統與計算機平台結合的電子凸輪軟體可以增加運動曲線生成的靈活性。本文首先探討電子凸輪的研究背景,並且與機械凸輪的優缺點比較。藉由已發展成熟的凸輪運動曲線規範,來進行電子凸輪曲線軌跡規劃,然而在電子凸輪軌跡規劃方面並沒有一個方便迅速的流程可以使用,故本文提出智慧化電子凸輪的概念,將最佳化演算法的概念加入其中,使得使用者不需要再用傳統耗時且依賴使用者經驗的調整方法。
我們會將凸輪運動規範VDI-2143中的曲線程式化,並提出規範中沒有載明的曲線使用限制條件,此外,鑑於規範VDI-2143中的特定運動邊界條件的曲線選擇太少,本文還會提出以最佳化的連接的多段三次多項式。除此之外,我們會建立智慧化電子凸輪的程式,並加入Matlab函式中的fmincon、遺傳演算法及開源的粒子群演算法來優化使用者無法決定的參數,且由於最佳化演算法,使用者還可以優化主軸轉速等等的效能,使得不夠熟悉電子凸輪的使用者也能快速使用。
最後,我們以沖床為例,利用智慧化電子凸輪的流程找出沖床三個模式下的軌跡曲線來驗證結果是否正確。


With the development of electronic technologies and disadvantages of mechanical cams, mechanical cams are gradually replaced by electronic cams. This causes mechanical cams to be gradually replaced by electronic cams. In the servo system, it is possible to use servo control technologies to drive the rotations of motors to achieve synchronous and tracking movement in cam mechanisms. Moreover, electronic cam software is combined with the servo systems and the computer platform can increase the flexibility of motion curve generations. Therefore, this thesis first discussed the research background of electronic cams and then discussed the advantages and disadvantages of mechanical cams. With the developed cam motion curve standards, we planned the electronic cam curves. However, there are no have convenient and quick processes for electronic cam trajectory planning. For this reason, this thesis proposed intelligent electronic cam which added optimization algorithms to help users achieve electronic cam trajectory planning.
We have programmed the curves in the standard VDI-2143 and proposed the additional limitations of some curves. In additional, we proposed a new curve which provides more options when we plan a trajectory. Moreover, in the program of intelligent electronic cam, we have added the Matlab function fmincon, genetic algorithm and particle swarm optimization to help users determine curve parameters. Besides, users can optimize the performance of the spindle speed.
Finally, we take the press as an example and use the process of intelligent electronic cam to retrieve the trajectory curves in the three modes of the press to verify whether the results are correct.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機 4 1.4 研究方法 4 1.5 研究貢獻 5 1.6 論文架構 5 第二章 智慧化電子凸輪 7 2.1 凸輪簡介 7 2.1.1 機械凸輪 7 2.1.2 電子凸輪 8 2.1.3 規範VDI-2143 9 2.1.4 新增曲線:多段三次多項式 15 2.2 智慧化電子凸輪架構 19 2.3 架構圖制定方法 23 2.3.1 使用者輸入值 23 2.3.2 運動邊界定義方法 24 2.3.3 目標函數定義方法 27 2.3.4 凸輪表的定義 30 2.3.5 根據運動邊界條件選擇曲線的方法 35 2.3.6 最佳化演算法 38 2.3.7 最佳化疊代過程 44 第三章 程式開發 46 3.1 公式程式化流程 46 3.2 程式運作流程 52 3.3 程式碼撰寫 54 3.3.1 讀取使用者輸入值 55 3.3.2 決定運動邊界條件 56 3.3.3 決定目標函數 57 3.3.4 決定凸輪表 59 3.3.5 以目標函數決定曲線順位 60 3.3.6 變換演算法 64 第四章 智慧化電子凸輪應用──伺服沖床加工 67 4.1 伺服沖床簡介 67 4.2 伺服沖床機構運動數學模型 67 4.3 伺服沖床能力圖介紹 69 4.4 沖床應用-鍛打模式 71 4.5 沖床應用-鐘擺模式 80 4.6 沖床應用-引伸模式 83 第五章 結論與未來展望 87 5.1 結論 87 5.2 未來展望 87 參考文獻 89

[1] D. H. Kim and T. C. Tsao. "Robust performance control of electrohydraulic actuators for electronic cam motion generation," IEEE Transactions on Control Systems Technology, Vol. 8, No. 2, pp. 220-227, 2000.
[2] J. Wang and T. C. Tsao, "Repetitive control of linear time varying systems with application to electronic cam motion control," Proceedings of the 2004 American Control Conference, Vol. 4, pp.3794-3799, Boston, MA, USA, 2004.
[3] Y. H. Chang, W. H. Chieng, C. S. Liao, and S. L. Jeng, “A novel master switching method for electronic cam control with special reference to multi-axis coordinated trajectory following,” Control Engineering Practice, Vol. 14, No. 2, pp.107-120, 2005.
[4] A. Schleinitz, H. Schlegel and M. Putz. "Definition of characteristic values for the efficient and safe implementation of electronic cam gears," International Conference on Intelligent Systems in Production Engineering and Maintenance, Vol. 835 , pp. 128-138. Springer, Cham, 2018.
[5] C. S. Liao, S. L. Jeng, and W. H. Chieng, “Electronic cam motion generation with special reference to constrained velocity, acceleration, and jerk,” ISA Transactions, Vol. 43, No. 3, pp. 427-443, 2004.
[6] X. Jiazhong, Z. Lei, and Q. Ming, “Research on electronic cam based on nurbs interpolation algorithm,” 2009 9th International Conference on Electronic Measurement & Instruments, Vol. 4, pp. 669-674, Beijing, China, 2009.
[7] G. Chen, Q. Li, W. Wang, and M. Zhuo, “Data preparation for electronic cam based needle bar shifting mechanism of carpet tufting machine,” 2010 2nd International Conference on Industrial and Information Systems, Vol. 2, pp. 48-51, Dalian, China, 2010.
[8] A. Setiadi, “Development of electronic cam motion control for synchronous cutting system,” Proceedings of the Conference on Management and Engineering in Industry, Vol. 1, No. 1, pp. 22-26, Ontario, Canada, 2019.
[9] M. S. J. Černohorský, “Extreme dynamics on eCAM linear drive,” Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Vol. 5, pp. 114-119, Ohrid, Macedonia, 2010.
[10] H. S. Jeon, K. J. Park and Y. S. Park, “An optimal cam profile design considering dynamic characteristics of a cam-valve system,” Experimental Mechanics, Vol. 29, No.4, pp. 357-363, 1989.
[11] T. Kiran and S. K. Srivastava, “Analysis and simulation of cam follower mechanism using polynomial cam profile,” International Journal of Multidisciplinary and Current Research, Vol. 1, pp. 210-217, 2013.
[12] K. Verma, R. M. Belokar, V. K. Verma and K. Ntalianis, “Track-based analysis for profile generation on globoidal cam in automatic tool changer of CNC machining center,” Assembly Automation, Vol. 39, No. 2, pp. 369-379, 2019.
[13] F. W. Flocker, “Addressing cam wear and follower jump in single-dwell cam-follower systems with an adjustable modified trapezoidal acceleration cam profile,” Journal of engineering for gas turbines and power, Vol. 131, No. 3, pp. 1-8, 2009.
[14] G. Wenzhi, F. Jingqi, and H. Zhaoxin, “A design approach of asymmetrical cam profile and its effect on performance of high-speed automotive engine,” SAE Technical Paper, No. 2004-01-0610, 2004.
[15] L. K. Sahu, O. P. Gupta, and M. Sahu, “Design of cam profile using higher order B-spline,” International Journal of Innovative Science, Engineering & Technology, Vol. 3, Issue 2, pp.327-335, 2016.
[16] Y. Ning, W. Xu, F. Liu, H. Jin, and B. Li, “Design of cam profile for variable stiffness actuator based on Bezier spline,” 2018 IEEE International Conference on Information and Automation, pp. 1163-1168, Wuyishan, China, 2018.
[17] G. Xuan, Y. Shao, and L. Liu, “Optimal design of grooved cam profile using non-uniform rational B-splines,” MATEC Web of Conferences, Vol. 139, No. 47, pp. 1-5, 2017.
[18] J. Yu, H. Luo, J. Hu, T. V. Nguyen, and Y. Lu, “Reconstruction of high-speed cam curve based on high-order differential interpolation and shape adjustment,” Applied Mathematics and Computation, Vol.356, pp. 272-281, 2019.
[19] T. T. N. Nguyen, S. Kurtenbach, M. Hüsing and B. Corves, “A general framework for motion design of the follower in cam mechanisms by using non-uniform rational B-spline,” Mechanism and Machine Theory, Vol. 137, pp. 374-385, 2019.
[20] 邱重融, “電子凸輪之運動曲線分析與應用研究,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, 2017.
[21] 廖成旺, “電子凸輪於漸層色彩織物之模擬與實現,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, 2008.
[22] 許巍鐘, “線型馬達驅動之電子凸輪系統,” 國立成功大學製造工程研究所, 碩士論文, 2005.
[23] 廖俊旭, “六自由度運動模擬器之電子凸輪式追蹤運動控制策略,” 國立交通大學機械工程研究所, 碩士論文, 2004.
[24] 王商茂, “利用電子凸輪(ECAM)實現高速剛性攻牙之研究,” 大葉大學機械與自動化工程研究所, 碩士論文, 2009.
[25] Richtlinie, “V. D. I. 2143, Blatt 1: Bewegungsgesetze für Kurvengetriebe-Theoretische Grundlagen,” Düsseldorf: VDI, 1980.
[26] Richtlinie, “V. D. I. 2143, Blatt 2: Bewegungsgesetze für Kurvengetriebe-Praktische Anwendung,” Düsseldorf: VDI, 1987
[27] Y. L. Kuo, C. C. Lin and Z. T. Lin, “Dual-optimization trajectory planning based on parametric curves for a robot manipulator,” International Journal of Advanced Robotic Systems, Vol. 17, Issue 3, pp. 1-14, 2020, DOI. 10.1177/1729881420920046.
[28] Mathworks, “fmincon r2020a documentation,” Available: https://www.mathworks.com/help/optim/ug/fmincon.html
[29] J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” MIT press, 1992.
[30] Mathworks, “ga r2020a documentation,” Available: https://www.mathworks.com/help/gads/ga.html
[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95-International Conference on Neural Networks, Vol. 4, pp. 1942-1948, 1995.
[32] 粒子群最佳化PSO開源程式碼, Available: https://www.mathworks.com/Matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization

無法下載圖示 全文公開日期 2025/08/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE