簡易檢索 / 詳目顯示

研究生: 梁旭宏
Xu-Hong Liang
論文名稱: 具有高效率及高功率因數之單級原邊回授恆壓輸出LED之研製
High Efficiency and High Power Factor Development of Single-Stage Primary Feedback Constant Voltage Output LED
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 黃仲欽
Jonq-Chin Hwang
鄒明璋
Ming-Chang Tsou
郭明哲
Ming-Tse Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 116
中文關鍵詞: 返馳式轉換器原邊回授邊界導通模式不連續導通模式
外文關鍵詞: Flyback Converter, Primary Feedback, Boundary Conduction Mode, Discontinuous Conduction Mode
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製一具有高效率及高功率因數之單級原邊回授恆壓輸出LED,透過原邊回授控制,偵測變壓器輔助繞組的電壓訊號來實現輸出穩壓,並固定MOSFET導通時間,使輸入電流追隨輸入電壓波形,讓系統能在外部元件數較少的情況下,獲得良好的效率及功率因數,並藉由SIMetrix/SIMPLIS模擬軟體結合理論分析,驗證電路之可行性。
    最後研製出一輸出直流電壓45 V/45 W單級原邊回授恆壓輸出之返馳轉換器,模型電路操作在邊界導通模式與導通模式,具有寬範圍交流輸入電壓90 Vrms~277 Vrms,透過不同的操作模式並限制切換頻率,可以改善輕/重載時的效率,實測方面,在最低交流輸入電壓90 Vrms且輸出滿載時,效率為90.45%,在最高交流輸入電壓為277 Vrms且輸出滿載時,效率為91.91%,在寬範圍交流輸入電壓當中,滿載效率最高可達92.3%,最高功率因數可達0.997,與現有文獻相比,使用本文架構於輸出滿載且輸入電壓為90 Vrms及230 Vrms之功率因數分別比文獻高出0.414及0.51,平均效率相差約0.24%,本論文結合理論分析並提供步驟性的電路設計流程,以利讀者瞭解並設計本文電路架構,縮短系統設計時間。


    In this thesis, a single-stage primary feedback constant voltage output LED with high efficiency and high power factor is developed. The output voltage is stabilized by primary feedback control, which detects the voltage signal of the transformer auxiliary winding and fixes the MOSFET on-time to make the input current follow the input voltage waveform, so that the system can obtain good efficiency and power factor with fewer external components and is analyzed by SIMetrix/SIMPLIS simulation software to verify the feasibility of the circuit. SIMetrix/SIMPLIS simulation software is used to validate the feasibility of the circuit.
    Finally, a single-stage DC voltage 45 V/45 W constant voltage primary feedback flyback converter is developed. The model circuit is operated in boundary conduction mode and conduction mode with a wide range of AC input voltages from 90 Vrms to 277 Vrms, which improves the efficiency at light/heavy loads through the different operation modes and the limitation of the switching frequency. The efficiency is 90.45% at the lowest AC input voltage of 90 Vrms and full load, 91.91% at the highest AC input voltage of 277 Vrms and full load, and 92.3% at full load over a wide range of AC input voltages with a maximum power factor of 0.997. Compared with the existing literatures, the power factor of the framework is higher than that of the existing literature for the outputs of the full-loaded system at input voltages of 90 Vrms and 230 Vrms, and the power factor of the full-loaded system at outputs of 230 Vrms. Compared with the existing literature, the power factor of the architecture of this thesis is 0.414 and 0.51 higher than that of the literature, and the average efficiency difference is about 0.24%. This thesis concludes the theoretical analysis and provides the step-by-step circuit design flow, which is helpful for readers to understand and design the circuit architecture of this thesis and shorten the system design time.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 圖目錄 xvii 表目錄 xxii 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 2 1.3系統架構之規格與特色 5 1.4本文大綱 7 第二章 功率因數修正器之電路架構及動作原理 9 2.1前言 9 2.2主動式功率因數修正電路之控制方法 9 2.2.1連續導通模式 10 2.2.2不連續導通模式 17 2.2.3邊界導通模式 20 第三章 返馳式轉換器之架構及工作原理 25 3.1前言 25 3.2返馳式轉換器工作模式 26 3.2.1連續導通模式 27 3.2.2不連續導通模式 32 3.2.3邊界導通模式 35 3.3準諧振返馳式轉換器電路之動作原理 37 3.4返馳轉換器之輸出回授控制方法及動作原理 44 3.4.1二次側回授穩壓工作方式 45 3.4.2一次側原邊回授穩壓工作方式 46 第四章 原邊回授恆壓輸出LED控制電路 49 4.1前言 49 4.2本文控制IC介紹 49 4.3電路規格及主要元件參數設計 60 4.4損耗來源分析與公式推導 70 第五章 系統之模擬與實測結果 74 5.1前言 74 5.2電路模擬 74 5.3電路實測波形與結果 83 5.3.1功率因數修正實測波形 84 5.3.2準諧振及波谷切換實測波形 87 5.4系統效率與功率因數及輸出穩壓時間實測結果 97 5.5實測結果與現有文獻之比較 107 5.6原型電路實體圖 109 第六章 結論與未來展望 110 6.1結論 110 6.2未來展望 112 參考文獻 114

    [1] MPS.(2024).Primary-Side vs. Secondary-Side Regulation. from https://www.monolithicpower.com/en/primary-side-vs-secondary-side-regulation
    [2] Revised ENERGY STAR Program Requirements for Solid-State Lighting Luminaires: Eligibility Criteria—Version 1.1, Dec. 2008.
    [3] Limits for Harmonic Current Emissions, IEC 61000-3-2 Standards,2005.
    [4]“Power factor correction (PFC) handbook, Rev. 5,” ON Semiconductor, 2014.
    [5] 蔡右平,「高效率可調光之返馳式LED驅動器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2016。
    [6] 郭明豪,「準諧振返馳式轉換器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2014。
    [7] T. Yan, J. Xu, F. Zhang, J. Sha, and Z. Dong, “Variable-On-Time-Controlled Critical-Conduction-Mode Flyback PFC Converter,”IEEE Transactions on Industrial Electronics, vol. 61, pp. 6091-6099, 2014.
    [8] D. W. Hart and S. Y. Ou, Power Electronics, Annotated ed.: McGraw-Hill, 2011.
    [9] H. Chung, S. Y. R. Hui, and W. H. Wang, “An Isolated ZVS/ZCS Flyback Converter Using the Leakage Inductance of the Coupled Inductor,”IEEE Transactions on Industrial Electronics, vol. 45, pp. 679-682, 1998.
    [10] 吳義利,切換式電源轉換器 原理與實用設計技術 (實例設計導向),2 ed.: 文笙書局,2015。
    [11] L. Zheren and K. M. Smedley, “A Family of Continuous Conduction Mode Power Factor Correction Controllers Based on the General Pulse-Width Modulator,”IEEE Transactions on Power Electronics, vol. 13, pp. 501-510, 1998.
    [12] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter,”IEEE Transactions on Industrial Electronics, vol. 58, pp. 1856-1865, 2011.
    [13] L. Huber, B. T. Irving, and M. M. Jovanovic, “Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters,”IEEE Transactions on Power Electronics, vol. 24, pp. 339-347, 2009.
    [14] J. Park, Y. J. Moon, and M. G. Jeong, “Quasi-Resonant (QR) Controller With Adaptive Switching Frequency Reduction Scheme for Flyback Converter,” IEEE Transactions on Industrial Electronics, vol. 63, pp. 3571-3581, 2016.
    [15] P. S. Ninkovic, “A Novel Constant Frequency Hysteresis Current Controll of PFC Converters,” IEEE International Symposium on Industrial Electronics, pp. 1059-1064, 2002.
    [16] R. Redl, and B. P. Erisman, “Reducing Distortion in Peak-Current-Controlled Boost Power-Factor Correctors ,” IEEE Applied Power
    [17] P. Cooke, “Modeling average current mode control of power convertors,” IEEE Applied Power Electronics Conference and Exposition, pp. 256-262,Feb. 2000.
    [18] K. Yao, X. Ruan, X. Mao, and Z. Ye, “DCM boost PFC converter with high input PF,” IEEE Applied Power Electronics Conference and Exposition, pp 1405-1412, Feb. 2010.
    [19] A. Bianco, C. Adranga, and G. Scappatura, “Enhanced constant-on-time control for DCM/CCM boundary boost PFC pre-regulators: Implementation and performance evaluation,” IEEE Applied Power Electronics Conference and Exposition, pp. 69-75, March 2014.
    [20] 黃裕誠,「高效率邊界導通模式之升壓型功率因數修正器研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2023。
    [21] KODENSHI AUK.(2023).SF20A300HPI Datasheet
    [22] Leadtrend. (2021). LD7841 Datasheet.
    [23] L. Hua and S. Luo, “Design Comparisons Between Primary-sidecontrol and Secondary-side Control Using Peak Current Mode Controlled Active Clamp Forward Topology,” in Proc. IEEE APEC Conf., pp. 886-892, Feb. 2006.
    [24] 蔡宇宏,「準諧振控制電路及初次側調整控制器在充電器應用之研製」,碩士,電機工程系,國立臺灣科技大學,台北市,2017。
    [25] Texas Instruments, “TL431x Precision Programmable Reference,” Datasheet, Jan. 2015.
    [26] Lite-On Technology Crop., “Photocoupler LTV-817 Series,” Data Sheet, Sep. 2013.
    [27] PMP20533 USB Type-CTM DFP 15V/3A/45W Out, Universal AC Input Reference Design. (2017 8).
    [28] UCC28740 Constant-Voltage Constant-Current Flyback Controller Using Optocoupled Feedback. (2013 9).
    [29] 鄒明璋,「抑制電能轉換器傳導EMI之新型抖頻技術」,博士, 電機工程系,國立臺灣科技大學,台北市,2015。
    [30] 陳彥衛,「新型效率修正轉換器設計應用於 Type-C 型電力傳輸控制器」,碩士論文,電機工程系,國立臺灣科技大學,台北市,2017。

    無法下載圖示 全文公開日期 2034/07/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE