簡易檢索 / 詳目顯示

研究生: 楊啟平
Chi-Ping Yang
論文名稱: 應用於尼龍織物具透濕撥水之 丙烯酸酯封端型水性聚氨酯製程之開發
The Development of Acrylate-terminated Waterborne Polyurethane with Waterproofing and Breathability Applied on Nylon Fabric Surface
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
廖文城
Wen-Chang Liaw
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 141
中文關鍵詞: 水性聚氨酯丙烯酸酯封端型水性聚氨酯撥水性透濕性接觸角2,2 -二羥甲基丙酸二甲基乙醯胺
外文關鍵詞: WPU, WPUA, Water repellent, Water vapor permeability, Contact angle, DMPA, DMAC
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成具透濕、防撥水性能之水性聚氨酯並應用於尼龍織物開發研究。透過材料及化學結構之創新取代傳統製備透濕撥水材料時 之有毒助劑及會造成揮發性有機物(Volatile organic compounds,VOC)環保議題之有機氟化物,減少有機溶劑之使用外亦達到合成加工液之穩定性及賦予透濕撥水之功能。本研究分成二部分,第一部分為水性聚氨酯透濕防撥水加工液之開發;第二部分為水性聚氨酯透濕防撥水加工液之製程參數設計。利用丙烯酸樹酯結構之變化與水性聚氨酯進行加成反應,使聚合物兼具水性聚氨酯與丙烯酸樹酯兩者之優點,不僅可提升尼龍織物之機械性質與熱性質,同時賦予其透濕及防撥水的機能,有助於提升機能性紡織品應用範圍。
  第一部分將二苯基甲烷二異氰酸酯(MDI)與聚乙二醇(PEG)及親水擴鏈劑2,2-二羥甲基丙酸(DMPA)合成預聚物後,加入預先合成之丙烯酸十八酯均聚物(PSA)與預聚物之異氰酸酯基團(NCO)進行封端,合成壓克力封端型之水性聚氨酯(Water-based polyurethane with acrylate terminal,WPUA)。並以二甲基乙醯胺(DMAC)作為中和劑,形成可分散於水中帶有離子基團之水性聚氨酯乳液,利用凝膠滲透層析儀(GPC)、雷射粒徑分析儀(DLS)探討DMAC與DMPA所形成之離子基團與WPU之重量百分比對聚合物分子量、粒徑與其乳液穩定性之影響;並以傅立葉轉換紅外光譜(FT-IR)判定WPUA之結構,探討PSA之重量百分比與分子量對WPUA之熱性質及應用於織物上透濕防撥水性質。將合成之WPUA 20 %壓吸於尼龍布上,並進行SEM觀察加工液於纖維表面吸附之情形,再進一步量測與水滴之接觸角及水蒸氣之透氣性以作為透濕防撥水之指標。結果顯示,經WPUA加工後尼龍布其接觸角顯著提升,達到撥水效果,透濕性提升23.75 %。
  第二部分為水性聚氨酯透濕防撥水加工液製程參數設計,利用田口方法將DMPA與DMAC形成之離子基團比例、PSA分子量與其比例之製程參數進行實驗規劃,並利用灰關聯分析法進行多品質分析探討實驗參數對尼龍織物透濕防撥水之影響。經優化結果顯示,未經WPUA加工之尼龍布WCA為27.81∘,性質增益386.6 %;未經WPUA加工之尼龍布WVP為1247.89 g/m2×24hr;性質增益82 %。


In this study, water-based polyurethanes with moisture permeability and water-repellent properties were synthesized and applied to the research and development of nylon fabrics. Through the innovation of materials and chemical structure, it replaces the traditional toxic additives in the preparation of moisture-permeable water-repellent materials and organic fluorides that cause volatile organic compounds (VOC) environmental protection issues. It also reduces the use of organic solvents and achieves the stability of synthetic processing fluids and imparts moisture permeability. The function of water. The research is divided into two parts. The first part is the development of water-based polyurethane moisture-permeable anti-water-repellent processing liquid; the second part is the process parameter design of water-based polyurethane moisture-permeable anti-water-repellent processing liquid. By utilizing the change of the structure of the acrylic resin and the addition reaction of the aqueous polyurethane, the polymer has the advantages of both the aqueous polyurethane and the acrylic resin, which not only improves the mechanical properties and thermal properties of the nylon fabric, but also imparts moisture permeability and protection to the nylon fabric. The function of water transfer helps to enhance the application of functional textiles.
In the first part, after synthesizing prepolymer of diphenylmethane diisocyanate (MDI) with polyethylene glycol (PEG) and hydrophilic chain extender 2,2-dimethylolpropionic acid (DMPA), pre-synthesized acrylic acid was added. The octaester homopolymer (PSA) is terminated with an isocyanate group (NCO) of the prepolymer to form a water-based polyurethane with acrylate terminal (WPUA). And using dimethylacetamide (DMAC) as a neutralizing agent to form an aqueous polyurethane emulsion with ionic groups dispersed in water, using gel permeation chromatography (GPC), laser particle size analyzer (DLS) The effects of the weight percentage of ionic groups and WPU formed by DMAC and DMPA on the molecular weight, particle size and emulsion stability of the polymer were investigated. The structure of WPUA was determined by Fourier transform infrared spectroscopy (FT-IR) to investigate the weight of PSA. Percentage and molecular weight on the thermal properties of WPUA and on the moisture permeable and water repellent properties of fabrics. 20% of the synthesized WPUA was pressed onto the nylon cloth, and SEM was observed to adsorb the processing liquid on the surface of the fiber, and the contact angle with the water droplets and the gas permeability of the water vapor were further measured as an index of moisture permeability and water repellent. The results showed that the contact angle of nylon cloth after WPUA processing was significantly improved, and the water-repellent effect was achieved, and the moisture permeability was improved by 23.75%.
The second part is the process parameter design of water-based polyurethane moisture-permeable anti-water-repellent processing fluid. The Taguchi method is used to experimentally plan the ionic group ratio of DMPA and DMAC, and the process parameters of PSA molecular weight and its ratio, and use gray correlation analysis method. Quality analysis explored the influence of experimental parameters on the moisture permeability of nylon fabrics. The optimized results show that the WCA of the nylon fabric not processed by WPU is 27.81°, the property gain is 386.6%; the WVP of nylon fabric not processed by WPU is 1247.89 g/m2×24hr; the property gain is 82%.

目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 文獻回顧 4 1.3.1 透濕撥水的介紹 4 1.3.2 透濕撥水材料的研究現況 8 1.4 研究目的 11 1.5 研究創新性 12 1.6 研究內容 13 1.7 論文架構及研究流程 15 第2章 材料特性與合成原理 18 2.1 透濕撥水理論 18 2.1.1 接觸角理論 18 2.1.2 透濕機制 19 2.2 WPU簡介與發展 20 2.1.1 WPU單體之選擇 27 2.3 丙烯酸酯之特色 30 2.4 聚合反應理論 31 2.4.1 自由基聚合反應 31 2.4.2 加成反應 36 第3章 品質分析與最佳參數理論 38 3.1 田口法穩建設計(TAGUCHI METHOD) 41 3.1.1 穩建設計 44 3.1.2 參數設計 45 3.1.3 直交表實驗設計 46 3.1.4 品質損失函數(Quality loss function) 50 3.1.5 訊號雜訊比(S/N比) 54 3.1.6 主效應分析 55 3.1.7 變異數分析 56 3.2 確認實驗 60 3.3 灰階關聯法 62 3.3.1 灰色關聯分析 62 3.3.2 灰關聯分析流程步驟 63 3.4 最佳化分析流程 67 第4章 實驗規劃與流程 68 4.1 實驗規劃 68 4.2 實驗藥品與材料 69 4.2.1 聚氨酯系單體 70 4.2.2 丙烯酸系單體 72 4.2.3 溶劑 73 4.2.4 助劑 74 4.2.5 布種與規格 75 4.3 實驗分析儀器與檢測方式 76 4.3.1 化學性質分析 76 4.3.2 物理性質分析 79 4.3.3 其他輔助儀器 81 4.4 實驗步驟 81 4.4.1 實驗流程步驟 81 4.4.2 實驗合成反應式 83 4.4.3 實驗步驟 86 第5章 結果與討論 88 5.1 ME對PSA之探討 88 5.1.1 PSA之FTIR光譜 89 5.1.2 ME含量對PSA分子量的影響 90 5.2 親水性離子基團對乳液穩定性之探討 91 5.3 PSA含量及分子量之不同對WPUA性能探討 93 5.3.1 WPUA之FTIR光譜 94 5.3.2 WPUA之熱烈解溫度 95 5.3.3 WPUA之玻璃轉移溫度 99 5.3.4 WPUA於尼龍布表面觀測 103 5.3.5 WPUA於尼龍布之撥水性測試 104 5.3.6 WPUA於尼龍布之透濕度測試 107 5.3.7 WPUA於尼龍布之織物剛柔性測試 108 5.4 品質最佳化分析 109 5.4.1 WPUA透濕撥水加工液單品質最佳化分析結果 109 5.4.2 WPUA透濕撥水加工液多品質最佳化分析結果 123 第6章 結論 132 參考文獻 135

[1] Stucki, M., Kellenberger, C.R., Loepfe, M., et al. (2016). Internal polymer pore functionalization through coated particle templating affords fluorine-free green functional textiles. Journal of Materials Chemistry A, 4(39), 15197-15206.
[2] Park, J.H., Suh,M., Satam, D., et al. (2014). Integration of computer aided design and smart textiles to prepare multi-functional sportswear: diet-facilitating suit. AATCC Review, 14(4), 38-45.
[3] Horrocks, A.R., & Anand S.C. (2000). Handbook of technical textiles, Woodhouse Publishing Ltd., Cambridge, 208-213.
[4] Kim, E. Y., Lee, J. H., Lee, D. J., et al. (2013). Synthesis and properties of highly hydrophilic waterborne polyurethane-ureas containing various hardener content for waterproof breathable fabrics. Journal of Applied Polymer Science, 129(4), 1745-1751.
[5] Tanner, J.C. (1979). Breathability comfort and Gore-Tex laminates. Journal of Coated Fabrics, 8(4), 312-322
[6] Alizadeh, M., Lohrasby, F., Khajavi, R., et al. (2016). Studying the mechanical properties of composites made of kenaf‐nylon 66 fabric, silica nanoparticles, and epoxy resin. Polymer Composites, 37(3), 674-683.
[7] Nakatsuka, H., Kawakado, S., Ikeda, T., et al. (2017). U.S. Patent Application, 15(314), 051.
[8] Amatimaggio, F., Calistri, S., Ventura, F., et al. (1998). Acute dimethylformamide (DMF) poisoning: a case report. Journal of Occupational Medicine and Health, 89(6), 533-537.
[9] Lomax, G.R. (2008). Synthesis and properties of highly hydrophilic waterborne polyurethane-ureas containing various hardener content for waterpro of breathable fabrics. Journal of Coat Fabrics. 15, 40.
[10] Yun, J.K., Yoo, H.J., & Kim, H.D. (2008). Preparation and properties of waterborne polyurethane-urea/sodium alginate blends for high water vapor permeable coating materials. Journal of Applied Polymer Science. 105, 1168-1176.
[11] Lee, Y.H., Kim H.D., & Kim E.J. (2011). Effect of acrylic monomer content on the properties of waterborne poly(urethane-urea)/acrylic hybrid materials. Journal of Applied Polymer Science. 120 212-219
[12] Noreen, A., Zia, K.M., Zuber, M., et al. (2016). Recent trends in environmentally friendly water-borne polyurethane coatings: a review. Korean Journal of Chemical Engineering, 33(2), 388-400.
[13] Shin, M., Lee, Y., Rahman, M., et al. (2013). Synthesis and properties of waterborne fluorinated polyurethane-acrylate using a solvent-/emulsifier-free method. Polymer Composites, 54(18), 4873-4882.
[14] Tan, J., Liu, W., Wang, H., et al. (2016). Preparation and properties of UV-curable waterborne comb-like (meth)acrylate copolymers with long fluorinated side chains. Progress in Organic Coatings, 94, 62-72.
[15] Munekata S. (1988). Fluoropolymers as coating material, Progress in Organic Coatings, 16(2), 113-134
[16] Li, K., Wu, P., & Han, Z. (2002). Preparation and surface properties of fluorine-containing diblock copolymers. Polymer Composites, 43(14), 4079-4086.
[17] Saïdi, S., Guittard, F., Guimon, C., et al . (2005). Low surface energy perfluorooctyalkyl acrylate copolymers for surface modification of PET. Macromolecular Chemistry and Physics, 206(11), 1098-1105.
[18] Gao, L., & McCarthy, T.J. (2006). Artificial lotus leaf prepared using a 1945 patent and a commercial textile. Langmuir, 22(14), 5998-6000.
[19] Xu, L., Zhuang, W., Xu, B., et al . (2012). Superhydrophobic cotton fabrics prepared by one-step water-based sol–gel coating. Journal of the Textile Institute, 103(3), 311-319.
[20] Garai, R.M., Sánchez, I.C., García, R.T., et al. (2005). Study on the effect of raw material composition on water‐repellent capacity of paraffin wax emulsions on wood. Journal of dispersion science and technology, 26(1), 9-18.
[21] Xiong, D., Liu, G., & Duncan, E.S. (2012). Diblock-copolymer-coated water-and oil-repellent cotton fabrics. Langmuir, 28(17), 6911-6918.
[22] Zaiming, Q., John C., & Wayne, W. (2004). Water-and oil-repellency imparting urethane oligomers comprising perfluoroalkyl moieties. U.S. Patent, 6(803),109.
[23] Wang, Y., Qiu, F., Xu, B., et al. (2013). Preparation mechanical properties and surface morphologies of waterborne fluorinated polyurethane-acrylate. Progress in Organic Coatings, 76(5), 876-883.
[24] Ashish K.S. (2007). Coated textiles: principles and applications, Second Edition, U.S.
[25] WU, H., Zhang, Y., & Xie, H. (2011). Moisture management ability of waterproof breathable fabrics. Journal of Textile Research, 1, 011.
[26] Quan, H., Wu, D., & Han, J. (2012). Study on the structure of polyether polyurethane and its waterproofing & breathable properties. Textile Auxiliaries, 29, 8-11.
[27] Meng, Q.B., Lee, S.I., Nah, C., et al. (2009). Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Progress in Organic Coatings, 66(4), 382-386.
[28] Seo, B.B., Han, Y.C., Yang, J.H., et al. (2018). Properties of waterborne polyurethane having poly (ethylene glycol) side chains for waterproof breathable coating. Polymer-Korea, 42(3), 417-426
[29] Lee, Y.H., Kim, E.J., & Kim, H.D. (2011). Synthesis and properties of waterborne poly (urethane urea) containing polydimethylsiloxane. Journal of Applied Polymer Science, 120(1), 212-219.
[30] Ebrahimi, M.V., Barikani, M., & Mohaghegh, S.M.S. (2006). Synthesis and properties of ionic polyurethane dispersions: influence of polyol molecular weight. Iranian Polymer Journal, 15(4), 323-330.
[31] Jiang, L., Xu, Q., & Hu, C.P. (2006). Preparation and characterization of waterborne polyurethaneurea composed of dimer fatty acid polyester polyol. Journal of nanomaterials, 2606-2614.
[32] Xu, J., Li, T., Zhao, W., et al. (2016). Synthesis and characterization of waterborne polyurethane emulsions based on poly (butylene itaconate) ester. Designed Monomers and Polymers, 19(4), 309-318.
[33] Wang, H., Zhou, Y., He, M., et al. (2015). Effects of soft segments on the waterproof of anionic waterborne polyurethane. Colloid and Polymer Science, 293(3), 875-881.
[34] Jeong, J.H., Han, Y.C., Yang, J.H., et al. (2017). Waterborne polyurethane modified with poly (ethylene glycol) macromer for waterproof breathable coating. Progress in Organic Coatings, 103, 69-75.
[35] Guo, Y.H., Guo, J.J., Miao, H., et al. (2014). Properties and paper sizing application of waterborne polyurethane emulsions synthesized with isophorone diisocyanate. Progress in Organic Coatings, 77(5), 988-996.
[36] Rahman, M.M., & Kim, H.D. (2006). Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). Journal of Applied Polymer Science, 102(6), 5684-5691.
[37] Meng, Q.B., Lee, S.I., Nah, C., et al. (2009). Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Progress in Organic Coatings, 66(4), 382-386.
[38] 王柯、彭娅 & 王燕,(2010),硬段含量對脂肪族陰離子水性聚氨酯性能的影響。化工進展,(1),119-123。
[39] Savin, K.A. (2014). Radicals and Radical Anions. Writing Reaction Mechanisms in Organic Chemistry, 237-292.
[40] Bail, R. (2013). The effect of a type I photoinitiator on cure kinetics and cell toxicity in projection-microstereolithography. Procedia CIRP, 5, 222-225.
[41] Tan, J., Liu, W., Wang, H., et al. (2016). Preparation and properties of UV-curable waterborne comb-like (meth) acrylate copolymers with long fluorinated side chains. Progress in Organic Coatings, 94, 62-72.
[42] Sun, Y., & Liu, W. (2011). Synthesis and characterization of a new fluorinated macroinitiator and its diblock copolymer by aget atrp. Journal of Fluorine Chemistry, 132(1), 9-14.
[43] Kuram, E., Tasci, E., Altan, A. I., et al. (2013). Investigating the effects of recycling number and injection parameters on the mechanical properties of glass-fibre reinforced nylon 6 using Taguchi method, Materials & Design, 49, 139-150.
[44] Yicheng, L. (2015). Applying taguchi quality engineering to explore the optimum parameters of semi-finished products - take rubber industry as an example, National Yunlin University of Science and Technology, Taiwan.
[45] Chunjing, L., Dunbing, T., & Hua, H. (2013). Multi-objective optimization of turning based on grey relational and principal component analysis. Transactions of the Chinese Society for Agricultural Machinery, 44(4), 293-298.
[46] Pradhan, M.K., Meena, M., Sen, S., et al. (2015). Multi-objective optimization in end milling of Al-6061 using taguchi based G-PCA world academy of science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, 9(6).
[47] Jiakui, H. (2000). ECF bleaching of low kappa number kraft pulp. Transactions of China Pulp and Paper, 12(7), 109-203.
[48] 葉怡成,(2001),實驗設計法-製程與產品最佳化,五南圖書出版股份有限公司。
[49] 鄧聚龍,(2003) ,灰色系統理論與應用,高立圖出有限公司出版。
[50] 溫坤禮,(2003),灰關聯模型方法與應用,高立圖出有限公司出版。
[51] Seo, B., Han, Y.C., Yang, J.H., et al. (2018). Properties of waterborne polyurethane having poly (ethylene glycol) side chains for waterproof breathable coating. Polymer Composits, 42(3), 417-426.
[52] Rahman, M.M., & Kim, H.D. (2006). Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). Journal of Applied Polymer Science, 102(6), 5684-5691.
[53] Xu, J., Li, T., Zhao, W., et al. (2016). Synthesis and characterization of waterborne polyurethane emulsions based on poly (butylene itaconate) ester. Designed Monomers and Polymers, 19(4), 309-318.
[54] Shin, M., Lee, Y., Rahman, M., et al. (2013). Synthesis and properties of waterborne fluorinated polyurethane-acrylate using a solvent-/emulsifier-free method. Polymer Composits, 54(18), 4873-4882.
[55] Ji, D., Fang, Z., He, W., et al. (2015). Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Industrial Crops and Products, 74, 76-82.
[56] Alva, G., Lin, Y., & Fang, G. (2018). Synthesis and characterization of chain-extended and branched polyurethane copolymers as form stable phase change materials for solar thermal conversion storage. Solar Energy Materials and Solar Cells, 186, 14-28.
[57] Chen, Y., Liu, Y., Fan, H., et al. (2007). The polyurethane membranes with temperature sensitivity for water vapor permeation. Journal of Membrane Science, 287(2), 192-197.

無法下載圖示 全文公開日期 2023/08/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE