簡易檢索 / 詳目顯示

研究生: 陳凌漢
Ling-Han Chen
論文名稱: LCC補償電路達成感應式功率傳輸系統的研製
Design and Implementation of an Inductive Power Transfer System with LCC Compensation Circuit
指導教授: 劉添華
Tian-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
楊宗銘
Chung-Ming Young
楊士進
Shih-Chin Yang
徐國鎧
Kuo-kai Shyu
楊勝明
Sheng-Ming Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 128
中文關鍵詞: 感應式功率傳輸LCC補償電路預測型控制器零電壓切換
外文關鍵詞: inductive power transfer, LCC compensation circuit, predictive controller, zero voltage switching
相關次數: 點閱:232下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一部感應式功率傳輸系統,文中繞製兩個圓盤型線圈,作為一次側及二次側的耦合電感,透過磁場耦合的方式達成感應式功率傳輸。在電路架構方面,可分為兩級,前級為降壓轉換器,其目的為調整後級的輸入電壓,達成輸出電流控制。後級為LCC諧振轉換器,採用定頻操作,並利用LCC補償電路補償漏感效應,減少虛功。
    本文所提LCC補償電路相較於串/串補償電路,具有更佳的線圈錯位容忍能力。為了提升系統效率,文中透過調整二次側諧振槽參數達成零電壓切換,減少開關切換損失。
    本文採用的預測型控制器是以離散的方式實現,相較於離散時域的比例積分控制器,預測型控制具有較佳的暫態響應與加載能力。最後使用德州儀器公司生產的TMS320F2808數位訊號處理器作為控制核心,實現本文的相關電路控制法則。實測結果與模擬分析相當吻合,說明本文所提方法的正確性與可行性。


    This thesis investigates the implementation of an inductive power transfer system with LCC compensation circuit. Two circular coils are used as the primary and secondary coupling inductors to achieve the inductive power transfer. There are two stages in the main power circuit. The first stage is a buck converter to adjust the input voltage of the second stage. The second stage is an LCC resonant converter, which is operated at a constant switching frequency. In addition, the LCC compensation circuit is used to compensate the influence of leakage inductance to reduce reactive power.
    Compared with the series-series compensation circuit, the LCC compensation circuit has better tolerance of the misalignment between the primary coil and the secondary coil. To increase the efficiency of the inductive power transfer system, a zero voltage switching condition is achieved by tuning the secondary resonant tank parameters.
    A predictive controller is implemented in the discrete-time domain. Compared with the discrete-time PI controller, the predictive controller has better transient responses and load responses. Finally, a TMS320F2808 digital signal processor, manufactured by Texas Instrument, is used as a control center to realize the control algorithms. Experimental result can validate the simulation result to show the correctness and feasibility of the proposed methods.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 論文大綱 5 第二章 感應式功率傳輸系統 6 2.1 簡介 6 2.2 系統架構 6 2.3 耦合線圈 7 2.3.1 等效模型 9 2.3.2 參數量測與計算 13 2.4 線圈設計考量 16 2.4.1 高頻效應 16 2.4.2 線圈感值提高方法 18 2.5 磁路分析 19 第三章 電路分析 22 3.1 簡介 22 3.2 電路架構 22 3.3 降壓轉換器 23 3.3.1 穩態分析 24 3.3.2 操作頻率選擇 29 3.3.3 電感選擇 29 3.3.4 電容選擇 30 3.4 H-型全橋電路 31 3.4.1 工作原理 31 3.4.2 一次諧波近似法 32 3.5 補償電路 35 3.5.1 補償原理 35 3.5.2 LCC補償電路 36 3.5.3 電路分析 38 3.5.4 柔性切換調整 43 第四章 控制器設計 52 4.1 簡介 52 4.2 待控系統模型 53 4.2.1 系統模型推導 53 4.2.2 模型離散化 56 4.3 預測型控制器 57 4.3.1 輸出電流控制 57 4.3.2 充電器的控制 64 第五章 系統研製 65 5.1 簡介 65 5.2 硬體電路製作 66 5.2.1 主電路架構 66 5.2.2 閘極驅動電路 70 5.2.3 偵測電路 71 5.2.4 過電流保護電路 73 5.2.5 電源電路 74 5.2.6 數位訊號處理器 75 5.3 軟體架構 77 5.3.1 主程式 77 5.3.2 中斷程式 78 5.3.3 充電程式 79 第六章 實測結果 81 6.1 簡介 81 6.2 模擬與實測 81 第七章 結論與建議 104 參考文獻 105

    [1] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151–2169, May 2013.
    [2] G. A. Covic, J. T. Boys, "Inductive power transfer," Proceedings of the IEEE, vol. 101, no.6, pp. 1276 - 1289, June 2013.
    [3] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18–36, Mar. 2015.
    [4] C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, “Modern advances in wireless power transfer systems for roadway powered electric vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533–6545, Oct. 2016.
    [5] D. Patil, M. K. McDonough, J. M. Miller, B. Fahimi, P. T. Balsara, “Wireless Power Transfer for Vehicular Applications: Overview and Challenges,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp.3-37, Mar. 2018.
    [6] J. Dai, D. C. Ludois, “A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6017 – 6029, Nov. 2015.
    [7] N. H. Kutkut, D. M. Divan, D. W. Novotny, R. H. Marion, "Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging," IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 169 - 178, Jan. 1998.
    [8] C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, D. Anderson, "High-efficiency contactless power transfer system for electric vehicle battery charging application," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1 pp. 65 - 74, Mar. 2015.
    [9] R. Bosshard, J. W. Kolar, J. Mühlethaler, I. Stevanovi´c, B. Wunsch, and F. Canales, “Modeling and η-α-Pareto optimization of inductive power transfer coils for electric vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 50–64, Mar. 2015.
    [10] W. X. Zhong, C. Zhang, X. Liu, S. Y. R. Hui, "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 933 - 942, Feb. 2015.
    [11] M. Budhia, J. T. Boys, G. A. Covic, and C.-Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, Jan. 2013.
    [12] S. Kim, G. A. Covic, and J. T. Boys, “Tripolar pad for inductive power transfer systems for EV charging,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5045–5057, July 2017.
    [13] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structures for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096–3108, Nov. 2011.
    [14] M. T. Outeiro, G. Buja, and D. Czarkowski, “Resonant power converters: An overview with multiple elements in the resonant tank network,” IEEE Ind. Electron. Mag., vol. 10, no. 2, pp. 21–45, June 2016.
    [15] N. A. Keeling, G. A. Covic, and J. T. Boys, “A unity-power-factor IPT pickup for high-power applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 744–751, Feb. 2010.
    [16] S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, “A double-sided LCC compensation network and its tuning method for wireless power transfer,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2261–2273, June 2015.
    [17] Y. H. Sohn, B. H. Choi, E. S. Lee, G. C. Lim, G. H. Cho, and C. T. Rim, “General unified analyses of two-capacitor inductive power transfer systems: Equivalence of current-source SS and SP compensations,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6030–6045, Nov. 2015.
    [18] X. Qu, H. Han, S. C. Wong, C. K. Tse, and W. Chen, “Hybrid IPT topologies with constant current or constant voltage output for battery charging applications,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6329–6337, Nov. 2015.
    [19] N. X. Bac, D. M. Vilathgamuwa, and U. K. Madawala, “A SiC-based matrix converter topology for inductive power transfer system,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4029–4038, Aug. 2014.
    [20] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140–1151, Mar. 2014.
    [21] U. K. Madawala and D. J. Thrimawithana, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789–4796, Oct. 2011.
    [22] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 18–36, Mar. 2015.
    [23] L. Chen, G. R. Nagendra, J. T. Boys, and G. A. Covic, “Double-coupled systems for IPT roadway applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 37–49, Mar. 2015.
    [24] D. Patil, M. Sirico, L. Gu, and B. Fahimi, “Maximum efficiency tracking in wireless power transfer for battery charger: Phase shift and frequency control,” IEEE ECCE-2016, Milwaukee, WI, USA, Sep. 2016, pp. 1–8.
    [25] H. H. Wu, A. Gilchrist, K. D. Sealy, and D. Bronson, “A high efficiency 5 kW inductive charger for EVs using dual side control,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 585–595, Aug. 2012.
    [26] M. R. Sonapreetha, S. Y. Jeong, S. Y. Choi, and C. T. Rim, “Dualpurpose non-overlapped coil sets as foreign object and vehicle location detections for wireless stationary EV chargers,” IEEE PELS Workshop Emerg. Technol., Wireless Power (WoW), Daejeon, South Korea, June 2015, pp. 1–7.
    [27] S. Y. Jeong, H. G. Kwak, G. C. Jang, and C. T. Rim, “Living object detection system based on comb pattern capacitive sensor for wireless EV chargers,” IEEE SPEC-2016, Auckland, New Zealand, Dec. 2016, pp. 1–6.
    [28] Zhang, W., White, J. C., Malhan, R. K., and Mi, C. C. "Loosely Coupled Transformer Coil Design to Minimize EMF Radiation in Concerned Areas." IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4779-4789, 2016.
    [29] C. Zheng, H. Ma, J.-S. Lai, and L. Zhang, “Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6108–6119, Nov. 2015.
    [30] R. Chen, C. Zheng, Z. U. Zahid, E. Faraci, W. Yu, J Lai, M. Senesky, D. Anderson and G. Lisi, “Analysis and parameters optimization of a contactless IPT system for EV charger,” IEEE APEC-2014, pp. 1654 - 1661, Mar. 2014.
    [31] W. Li, H. Zhao, J, Deng, S. Li, and C. Mi, “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4429–4439, June 2016
    [32] 王俊傑,非接觸式電能轉換器之研製,國立台灣科技大學,碩士論文 2015。
    [33] 莊豐銘,感應式功率傳送系統的控制及研製,國立台灣科技大學,碩士論文 2016。
    [34] EPARC,電力電子學綜論,全華圖書。
    [35] 吳義利,切換式電源轉換器,文笙書局
    [36] 劉濱達、陳在泩,電路學,東華。
    [37] 江炫樟,電力電子學,全華圖書。
    [38] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd edition, Norwell, MA: Kluwer, 2001.
    [39] 陳朝光、陳介力、楊錫凱,自動控制概論,高立圖書。
    [40] Ronald Soeterboek, Predictive Control:a unified approach, Prentice Hall International series in system and control engineering 1992
    [41] Liuping Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag 2009
    [42] Texas Instruments, TMS320F2809, F2808, F2806, F2802, F2801, C2802, C2801, F28016, F28015 DSPs datasheet, 2012.
    [43] Texas Instruments, TMS320x280x, 2801x, 2804x DSP Analog-to-Digital Converter (ADC) Reference Guide, 2010.
    [44] Texas Instruments, TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide, 2012.

    無法下載圖示 全文公開日期 2023/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE