簡易檢索 / 詳目顯示

研究生: 高郁芩
Yu-Chin Kao
論文名稱: 具健康狀態估測之鋰離子電池充電法評估
Evaluation of Charging Methods for Li-ion Batteries with State-of-Health Estimation
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
陳冠炷
Guan-Jhu Chen
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋰離子電池定功率定電壓充電法定損失定電壓充電法電池健康度類神經網路
外文關鍵詞: Li-ion batteries, constant power-constant voltage charging method, constant loss-constant voltage charging method, State-of-Health, Artificial Neural Network
相關次數: 點閱:407下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池已被廣泛運用到如手機、筆電等各種可攜式產品以及如電動腳踏車、電動汽車等各類的電動載具中,因此這些產品都需要良好的充電器以提高電池性能。然而,商業化產品通常偏好簡單型的充電法則,且未考量不同電池健康狀態(State of Health, SOH)對充電演算法之需求。有鑑於此,本文在不同的電池SOH狀況下實測五種簡單易實現的充電法,並且根據六項充電性能指標選擇出不同SOH下最適用之充電法。本文比較的六項充電性能指標包含最大溫升(取倒數)、平均溫升(取倒數)、充電容量、放電容量,充電速率以及充電效率,而所考慮之五種簡易型充電法則分別為三種不同截止端電壓之定電流定電壓充電法、定功率定電壓(Constant Power-Constant Voltage, CP-CV)充電法以及定損失定電壓(Constant Loss-Constant Voltage, CL-CV)充電法。除了選擇適用於不同SOH之充電法之外,本文亦針對所實現之五種充電法提出適用的SOH估測法則,該演算法選擇兩特徵參數,包括充電時電壓由3.7 V升至4.1 V所需的時間以及充電時電壓由3.8 V升至4.1 V所需的時間,並且利用類神經網路來建立電池SOH估測器,測試結果之最大相對誤差為4.12%,最小相對誤差為0.1%,平均相對誤差為0.98%,均方根誤差為1.35,此可證明所提之SOH估測機制可有效的估測鋰離子電池的健康狀態。


    Lithium-ion batteries have been widely used in various portable devices such as mobile phones, laptops, as well as electric vehicles including electric bicycles and cars. Therefore, these products require high-quality chargers to enhance battery performance. However, commercially available products often prefer simple charging algorithms and do not take into account the different requirements of battery state of health (SOH) for charging algorithms. In light of this, this study experimentally tested five simple and easily implementable charging methods under three different battery SOH conditions: 100%, 95%, and 91%. Based on six charging characteristics, the most suitable charging method for each of these three SOH levels was selected. The six charging characteristics compared in this study include maximum temperature rise (reciprocal value), average temperature rise (reciprocal value), charging capacity, discharging capacity, charging rate, and charging efficiency. The five considered simple charging methods were three different constant current-constant voltage charging methods with different termination voltage settings, constant power-constant voltage charging method, and constant loss-constant voltage charging method.
    In addition to selecting the appropriate charging methods for different SOH levels, this study also proposed suitable SOH estimation algorithms for these five charging methods. This algorithm selected two feature parameters: the time required for the voltage to increase from 3.7 V to 4.1 V during charging and the time required for the voltage to increase from 3.8 V to 4.1 V during charging. Neural networks were used to estimate the battery SOH, and the test results showed a maximum relative error of 4.12 %, a minimum relative error of 0.1 %, an average relative error of 0.98 %, and a root mean square error of 1.35. These results demonstrate the effectiveness of the proposed SOH estimation algorithm in accurately estimating the health status of lithium-ion batteries.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 一、 研究背景 1 二、 文獻回顧 1 三、 研究動機與目的 3 四、 論文大綱 4 第二章 二次電池與二次電池充電技術 6 一、 二次電池種類介紹 6 (一) 鉛酸電池 6 (二) 鎳氫電池 7 (三) 鋰離子電池 7 (四) 二次電池特性比較 7 二、 電池相關名詞 8 三、 二次電池充電技術 10 (一) 定電流充電法 10 (二) 定電壓充電法 11 (三) 定電流-定電壓充電法 12 (四) 衍生型定電流-定電壓充電法 12 (五) 多階段定電流充電法 15 第三章 鋰離子電池等效電路模型與健康狀態估測方法 16 一、 鋰離子電池等效電路模型簡介 16 (一) 理想電池等效電路模型 16 (二) 線性電池等效電路模型 17 (三) 一階戴維寧電池等效電路模型 17 二、 鋰離子電池之交流阻抗分析介紹 18 (一) 交流阻抗分析之介紹 18 (二) 交流阻抗分析之實驗規劃 20 (三) 交流阻抗分析之資料分析 23 (四) 取得之交流阻抗參數 25 三、 電池健康狀態(SOH)估測方法簡介 30 (一) 實驗估測法 (Experimental methods) 30 (二) 基於模型的估測方法 (Model-based methods) 31 (三) 機器學習估測法 (Machine Learning methods) 31 第四章 電池老化實驗 33 一、 本文所使用之電池 33 二、 電池老化實驗 35 (一) 電池加速老化實驗 37 (二) 電池檢測實驗 38 第五章 本文實現之五種充電法與SOH估測法 40 一、 五種充電法介紹 40 (一) 定電流定電壓充電法 40 (二) 定功率定電壓充電法 43 (三) 定損失定電壓充電法 45 (四) 實測環境 47 二、 本文提出之SOH估測法 47 (一) 人工神經網路基本概念[32-35] 48 (二) 類神經網路架構 49 (三) 類神經網路實現SOH估測流程 52 第六章 實驗結果與分析 63 一、 五種充電法評估 63 二、 類神經網路驗證 67 第七章 結論與未來展望 69 一、 結論 69 二、 未來展望 70 參考文獻 71

    [1] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen and A. Kojic, "Optimal charging strategies in lithium-ion battery," Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, pp. 382-387, 2011
    [2] K.M. Tsang and W.L. Chan, "Current sensorless quick charger for lithium-ion batteries," Energy Conversion and Management, vol. 52, no. 3, pp. 1593-1595, 2011.
    [3] P.H.L. Notten, J.H.G. Op het Veld and J.R.G. van Beek, "Boostcharging Li-ion batteries: A challenging new charging concept," Journal of Power Sources, vol. 145, no. 1, pp. 89-94, 2005.
    [4] Guan-Chyun Hsieh, Liang-Rui Chen and Kuo-Shun Huang, "Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller," in IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 585-593, 2001.
    [5] 羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
    [6] 劉元凱,「以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋」,台灣科技大學電機工程碩士論文,民國一零七年六月。
    [7] J. -W. Huang, Y. -H. Liu, S. -C. Wang and Z. -Z. Yang, "Fuzzy-control-based five-step Li-ion battery charger," 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, pp. 1547-1551, 2009.
    [8] 鍾瑋芯,「鋰離子電池充電方法之評估」,國立臺灣科技大學電機工程碩士論文,民國一零九年六月。
    [9] Noura, Nassim, Loïc Boulon and Samir Jemeï, "A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges," World Electric Vehicle Journal 11, vol. 66, no. 4, 2020.
    [10] Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen and Yao-Ching Hsieh, "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, vol. 86, no. 9, pp. 1506-1511, 2009.
    [11] Z. e. Dahmane, A. Malek, M. Bouhali, M. Bounabi, K. Kaced and M. S. Ait Cheikh, "A proposed pulses current method to extract the batteries parameters," 2017 6th International Conference on Systems and Control (ICSC), pp. 555-560, 2017
    [12] P. A. Topan, M. N. Ramadan, G. Fathoni, A. I. Cahyadi and O. Wahyunggoro, "State of Charge (SOC) and State of Health (SOH) estimation on lithium polymer battery via Kalman filter," 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta, pp. 93-96, 2016
    [13] J. Wei and C. Chen, "State of Charge and Health Estimation For Lithium-Ion Batteries Using Recursive Least Squares," 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 686-689, 2020
    [14] C. Vidal, P. Malysz, P. Kollmeyer and A. Emadi, "Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art," in IEEE Access, vol. 8, pp. 52796-52814, 2020
    [15] Naha, A., Han, S., Agarwal and S. et al. "An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries," Sci Rep 10, 9526 (2020).
    [16] Robert R. Richardson, Michael A. Osborne and David A. Howey, "Gaussian process regression for forecasting battery state of health," Journal of Power Sources, vol. 357, pp. 209-219, 2017.
    [17] Duo Yang, Xu Zhang, Rui Pan, Yujie Wang and Zonghai Chen, "A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve," Journal of Power Sources, vol. 384, pp. 387-395, 2018.
    [18] X. Feng et al., "Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine," in IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8583-8592, Sept. 2019.
    [19] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [20] 孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
    [21] Yang Shen, Dag Noréus and Stina Starborg, "Increasing NiMH battery cycle life with oxygen," International Journal of Hydrogen Energy, vol. 43, no. 40, pp. 18626-18631, 2018.
    [22] L. -R. Chen, R. C. Hsu and C. -S. Liu, "A Design of a Grey-Predicted Li-Ion Battery Charge System," in IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3692-3701, 2008.
    [23] Jiang, Shida, and Zhengxiang Song, "Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance" Energies 14, no. 16, 2021.
    [24] Xiaopeng Tang, Changfu Zou, Ke Yao, Guohua Chen, Boyang Liu, Zhenwei He and Furong Gao, "A fast estimation algorithm for lithium-ion battery state of health," Journal of Power Sources, vol. 396, pp. 453-458, 2018.
    [25] Yi Li, Mohamed Abdel-Monem, Rahul Gopalakrishnan, Maitane Berecibar, Elise Nanini-Maury, Noshin Omar, Peter van den Bossche and Joeri Van Mierlo, "A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter," Journal of Power Sources, vol. 373, pp. 40-53, 2018.
    [26] Krupp, Amelie, Ernst Ferg, Frank Schuldt, Karen Derendorf and Carsten Agert, "Incremental Capacity Analysis as a State of Health Estimation Method for Lithium-Ion Battery Modules with Series-Connected Cells" Batteries 7, no. 1, 2021.
    [27] T. Liang, L. Song and K. Shi, "On-board incremental capacity/differential voltage curves acquisition for state of health monitoring of lithium-ion batteries," 2018 IEEE International Conference on Applied System Invention (ICASI), pp. 976-979, 2018.
    [28] B. Gou, Y. Xu and X. Feng, "State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method," in IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 10854-10867, 2020.
    [29] Zhen Guo, Xinping Qiu, Guangdong Hou, Bor Yann Liaw and Changshui Zhang, "State of health estimation for lithium ion batteries based on charging curves," Journal of Power Sources, vol. 249, pp. 457-462, 2014.
    [30] Mingjie Shi, Jun Xu, Chuanping Lin and Xuesong Mei, "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, vol. 256, 2022.
    [31] Akram Eddahech, Olivier Briat and Jean-Michel Vinassa, "Determination of lithium-ion battery state-of-health based on constant-voltage charge phase," Journal of Power Sources, vol. 258, pp. 218-227, 2014.
    [32] McCulloch, W.S. and Pitts, "A logical calculus of the ideas immanent in nervous activity," Bulletin of Mathematical Biophysics 5, pp. 115–133, 1943.
    [33] LeCun, Y., Bengio and Y. & Hinton, "Deep learning," Nature 521, pp. 436–444, 2015.
    [34] Rumelhart, D., Hinton and G. & Williams, "Learning representations by back-propagating errors," Nature 323, pp. 533–536, 1986.
    [35] 鍾顏澤,「基於類神經網路之鋰離子電池動態交流阻抗估測剩餘容量之研究」,國立臺灣科技大學電機工程碩士論文,民國一百一十一年七月。

    QR CODE