簡易檢索 / 詳目顯示

研究生: 簡彥戎
Yan-Rong Jian
論文名稱: 碳材及金屬添加劑對經不同製程之AZ31鎂合金儲氫性能之影響
Effect of carbon and metallic additives on hydrogen storage properties of AZ31 magnesium alloy by different processes
指導教授: 黃崧任
Song-jeng Huang
口試委員: 陳元方
Yuan-fang Chen
向四海
Si-Hai Xiang
邱群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 儲氫等徑轉角擠壓高能量球磨AZ31鎂合金
外文關鍵詞: hydrogen storage, equal channel angular pressing, high energy ball milling, AZ31 magnesium alloy
相關次數: 點閱:387下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是探討AZ31鎂合金添加碳材及金屬添加劑,碳材添加劑選用奈米碳管(Carbon Nanotubes, CNT) ,金屬添加劑選用鎳(Nicekl, Ni)、釩(Vanadium, V)、鐵(Iron, Fe),作為催化劑,探討碳材及金屬混合添加物對AZ31鎂合金儲氫性能的影響。此外本研究亦探討經不同製程,製備鎂基儲氫材料對儲氫性能的影響,首先將AZ31鎂合金添加催化劑以鑄造的方式,製備鎂基複合材料,再分別以等徑轉角擠壓(Equal channel angular pressing, ECAP),高能量球磨(High Energy Ball Milling, HEBM),以及經等徑轉角擠壓再以高能量球磨製程,三種不同製程的加工,以相近的製程時間為比較標準,最後進行吸放氫量測。
研究結果顯示,經等徑轉角擠壓再以高能量球磨製程後,最有效提升 AZ31 鎂合金之儲氫性能,儲氫性能由大至小為添加奈米碳管與鎳、奈米碳管與釩、奈米碳管與鐵,而AZ31鎂合金添加碳材金屬添加劑,在經ECAP製程後,反而造成儲氫性能下降,在經各製程之比較中,未添加碳材金屬添加劑之AZ31 鎂合金經 ECAP 製程有較好之儲氫性能;而添加碳材金屬添加劑之AZ31 鎂合金經HEBM製程、經ECAP與 HEBM混合製程,則明顯提升AZ31鎂合金之儲氫性能。


This study investigates the effect of carbon and metallic additives on the hydrogen storage properties of AZ31 magnesium alloys. Carbon additives carbon nanotubes (CNT), metallic additives nicekl (Ni), vanadium (V), iron (Fe), Discuss the effect of carbon and metallic additives on the hydrogen storage performance. also explored the effect of different processes on hydrogen storage properties, the AZ31 magnesium matrix composites with additives were prepared by casting ,and then processed by equal channel angular pressing (ECAP), high Energy Ball Milling (HEBM) and after ECAP then HEBM Three different processes, use the similar process time as a benchmark. Finally, the measurement of hydrogen absorption and desorption is performed.
The results show that after ECAP then HEBM processes the most effective improve the hydrogen storage performance of AZ31 magnesium alloys. The increase in hydrogen storage performance from large to small additions of carbon nanotubes with nicekl, carbon nanotubes with vanadium, carbon nanotubes with iron, AZ31 magnesium alloys after ECAP processes Instead, it decrease in hydrogen storage performance. Compared in various processes without added carbon and metallic additives has better hydrogen storage performance through the ECAP process performance through the ECAP process, while the AZ31 magnesium matrix composite with carbon and metallic additives added has better hydrogen storage performance through the HEBM process, through the after ECAP then HEBM process.

第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 經等徑轉角擠壓製備鎂基儲氫材料 3 1.3.2 經高能量球磨法製備鎂基儲氫材料 8 1.3.3 鎂基材料添加催化劑之儲氫相關文獻 11 1.4 文獻回顧整理 16 第二章 研究理論基礎 18 2.1 鎂合金之簡介 18 2.1.1 鎂的基本性質 18 2.1.2 儲氫合金 19 2.2 ECAP製程簡介 20 2.2.1 ECAP加工路徑 21 2.2.2 晶粒細化原理 23 2.3 HEBM製程簡介 25 2.4 儲氫技術與方法 26 2.4.1 高壓儲氫 27 2.4.2 低溫液態儲氫 28 2.4.3 物理吸附儲氫 29 2.4.4 金屬氫化物儲氫 29 2.5 儲氫合金的動力學性質 30 2.6 儲氫合金熱力學性質 32 第三章 實驗方法與步驟 34 3.1 實驗材料及流程 34 3.2 實驗設備 37 3.2.1 鑄造用熔煉爐 37 3.2.2 熱處理高溫爐 40 3.2.3 等徑轉角擠壓試驗機 40 3.2.4 行星式球磨機 41 3.2.5 濕式自動研磨機及拋光機 42 3.2.6 光學顯微鏡 43 3.2.7 掃描式電子顯微鏡 44 3.2.8 X光繞射分析儀 45 3.2.9 Sievert-type儲氫量測設備 46 第四章 結果與討論 47 4.1 經ECAP製程之儲氫材料特徵分析 47 4.1.1 宏觀分析 47 4.1.2 微觀分析 49 4.1.3 成份分析 51 4.2 經HEBM製程之儲氫材料特徵分析 54 4.2.1 粒經分析 54 4.2.2 成份分析 56 4.3 經ECAP與HEBM製程之儲氫材料特徵分析 59 4.3.1 微觀分析 59 4.3.2 粒徑分析 60 4.3.3 成份分析 62 4.4 粉末特徵分析 65 4.5 吸放氫特性分析 69 4.5.1 鎂合金儲氫粉末活化 69 4.5.2 ECAP製程之粉末吸放氫分析 71 4.5.3 HEBM製程之粉末吸放氫分析 75 4.5.4 ECAP與HEBM製程之粉末吸放氫分析 79 4.6 各個製程之吸放氫動力學比較 83 4.7 與科技部專題研究計畫比較 85 4.8 XRD分析 86 第五章 結論 90 第六章 未來研究方向 92 參考文獻 93

[1] 蘇順發,儲氫材料,科學發展學報,第483期,12-17,2013年3月。
[2] V. M.Segal, “Materials processing by simple shear”, Materials Science and Engineering A, Vol. 197, 157-164, 1995.
[3] R.B.Figueired,T.G. Langdon, “Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP”, Materials Science and Engineering, Vol. 501, 105-114, 2009.
[4] N. Skryabina, N. Medvedeva, A. Gabov, D. Fruchart, S. Nachev, P. de Rango, “Impact of Severe Plastic Deformation on the stability of MgH2”,Journal of Alloys and Compounds, Vol. 645, 14-17, 2015.
[5] M. Krystian, M. J. Zehetbauera, H. Kropika, B.Mingler, G. Krexnerc, “Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by Equal Channel Angular Pressing”, Journal of Alloys and Compounds,Vol.509, 449-455, 2011.
[6] A.A.C. Asselli, D.R. Leiva, J. Huot, M. Kawasaki, T.G. Langdon, W.J. Botta, “
Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium all”,International Journal of Hydrogen Energy,Vol.40, 16971-16976, 2015.
[7] 陳學仕,量子點簡介,化工資訊 ChemNet 奈米專欄,2002年9月。
[8] A. Zeaiter, D. Chapelle, F. Cuevas, A. Maynadier, M. Latroche. “Milling effect on the microstructural and hydrogenation properties of TiFe0.9Mn0.1 alloy”, Powder Technology, Vol.339, 903-910, 2018.
[9] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, “The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy”, Acta Materialia, Vol.52, 405-414, 2004.
[10] J.-C. Crivello, T. Nobuki, T. Kuji, “Improvement of Mg–Al alloys for hydrogen storage applications”, International Journal of Hydrogen Energy, Vol.34, 1937-1943, 2009.
[11] C. Z. Wu, P. Wang, X. Yao, C. Liu, D. M. Chen, G. Q. Lu, H. M. Cheng, “Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride”, Journal of Alloys and Compounds, Vol.414, 259-264, 2005.
[12] G. Lang, J. Huot, S. boily, A.V. Neste, R.Schulz “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH –Tm (Tm5Ti, V, Mn, Fe and Ni) 2 systems”,Journal of Alloys and Compounds,Vol.292, 247-252, 1999.
[13] B.H.Chen, C.H. Kuo, J.R.Ku, P.S. Yan, C.J. Huang, M.S. Jeng, F.H. Tsau“Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs”,Journal of Alloys and Compounds,Vol. 568, 78-83, 2013.
[14] X. Hou, R. Hu, T. Zhang, H. Kou, W. Song, “Hydrogen desorption performance of high-energy ball milled Mg2NiH4 catalyzed by multi-walled carbon nanotubes coupling with TiF3”,International Journal of Hydrogen Energy, Vol.39, 19672-19681, 2014.
[15] 吳懿璋,強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立臺灣科技大學機械工程學系碩士論文,2014年7月。
[16] L. Zhou, “Progress and problems in hydrogen storage methods”, Renewable and Sustainable Energy Reviews, Vol. 9, 395-408, 2005.
[17] R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, Vol. 51, 881-981, 2006.
[18] J. Humphreys, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, Pergamon, 1994.
[19] 曲新生、陳發林,氫能技術,五南圖書出版股份有限公司,2006年4月。
[20] 毛宗強,氫能-21世紀的綠色能源,新文京開發出版股份有限公司,2008年3月。
[21] Riis, T., E. F. Hagen, ”HYDROGEN PRODUCTION AND STORAGE : R&D Priorities and Gaps”, International Energy Agency, 2006.
[22] 丘群,Hydrogen technology and application,國立臺灣科技大學氫能技術與應用之課堂講義。
[23] A. Züttel, “Hydrogen storage materials:keynote address”,2004 H2NETSeminar,University of Birmingham,2004.
[24] Y. Jia, C. Sun, S. Shen, J. Zou, S. S. Mao, X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage”,Renewable and Sustainable Energy Reviews, Vol.44, 289-303, 2015.
[25] 科技部專題研究計畫成果報告 不同碳材及過渡金屬添加物對經高能球磨 (HEBM) 以及等徑轉角擠壓 (ECAP) AZ鎂合金儲氫性能之影響

QR CODE